Mineração multi-relacional: o algoritmo GFP-growth
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/332 |
Resumo: | Data mining is the phase of the knowledge discovery in database process where an algorithm is applied to the available data, in order to prove a hypothesis or discover a still unknown pattern. The traditional data mining techniques can deal only with single tables; however it is interesting to look for patterns involving several related tables, aiming to analyze the existing relation between the entities present in one table and the data of the same entities present in another table. Depending on the relationship existing between these tables, applying a traditional algorithm to the joint table is not sufficient, as the joint table may contain duplicated attribute values which interfere in the analysis process of the generated rules. In order to solve this problem, this project adopts an approach which consists on looking for association rules mining the joint table. The adopted process considers the groups of tuples, where each group is formed by tuples of the same entity. Following this approach the GFP-Growth algorithm was developed, which is presented in this monograph along with its results and comparisons with other multi-relational algorithms. |
id |
SCAR_e7301178f1f42e41d721f5f7f5122778 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/332 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Pizzi, Luciene CristinaVieira, Marina Teresa Pireshttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4785837E4http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=N366295cba9b978-b014-4161-a5da-8237af8b20542016-06-02T19:05:21Z2007-08-162016-06-02T19:05:21Z2006-05-25PIZZI, Luciene Cristina. Mineração multi-relacional: o algoritmo GFP-growth.. 2006. 118 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2006.https://repositorio.ufscar.br/handle/ufscar/332Data mining is the phase of the knowledge discovery in database process where an algorithm is applied to the available data, in order to prove a hypothesis or discover a still unknown pattern. The traditional data mining techniques can deal only with single tables; however it is interesting to look for patterns involving several related tables, aiming to analyze the existing relation between the entities present in one table and the data of the same entities present in another table. Depending on the relationship existing between these tables, applying a traditional algorithm to the joint table is not sufficient, as the joint table may contain duplicated attribute values which interfere in the analysis process of the generated rules. In order to solve this problem, this project adopts an approach which consists on looking for association rules mining the joint table. The adopted process considers the groups of tuples, where each group is formed by tuples of the same entity. Following this approach the GFP-Growth algorithm was developed, which is presented in this monograph along with its results and comparisons with other multi-relational algorithms.A mineração de dados é a etapa do processo de descoberta de conhecimento na qual um algoritmo é aplicado sobre os dados disponíveis, com o intuito de provar uma hipótese ou descobrir algum padrão até então desconhecido. As técnicas tradicionais de mineração de dados tratam uma única tabela, no entanto é interessante buscar padrões que envolvam múltiplas tabelas relacionadas, com o intuito de analisar a relação existente entre os dados de uma entidade presentes em uma tabela e os dados dessa mesma entidade presentes em uma outra tabela. Dependendo do tipo de relacionamento existente entre essas tabelas, não basta realizar a junção das mesmas para aplicar um algoritmo tradicional de mineração de dados na tabela resultante, pois essa tabela pode conter duplicação de valores de atributos que interferem no processo de análise das regras geradas. Para resolver esse problema, este trabalho adota uma abordagem que consiste na busca por regras de associação, realizando a mineração na tabela resultante da junção. O processo adotado considera agrupamentos de tuplas, sendo que cada agrupamento é formado pelas tuplas de uma mesma entidade. Seguindo essa abordagem foi desenvolvido o algoritmo GFP-Growth, o qual é apresentado nesta monografia juntamente com seus resultados e comparações com outros algoritmos multi-relacionais.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarBRTipos específicos de bancos de dadosMineração multi-relacionalData mining (Mineração de dados)CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMineração multi-relacional: o algoritmo GFP-growthinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-1dae3c046-97c0-4ae0-93a9-d5b46cac186cinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissLCP.pdfapplication/pdf1200368https://repositorio.ufscar.br/bitstream/ufscar/332/1/DissLCP.pdf728208bb18c724a37e9c9e51c0521b56MD51TEXTDissLCP.pdf.txtDissLCP.pdf.txtExtracted texttext/plain245491https://repositorio.ufscar.br/bitstream/ufscar/332/2/DissLCP.pdf.txtea1c25987c17ac8418e02749bd88b7c5MD52THUMBNAILDissLCP.pdf.jpgDissLCP.pdf.jpgIM Thumbnailimage/jpeg6992https://repositorio.ufscar.br/bitstream/ufscar/332/3/DissLCP.pdf.jpgaa952ecea3c4755c8d6aedc93b7eb1b6MD53ufscar/3322023-09-18 18:30:38.631oai:repositorio.ufscar.br:ufscar/332Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:30:38Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Mineração multi-relacional: o algoritmo GFP-growth |
title |
Mineração multi-relacional: o algoritmo GFP-growth |
spellingShingle |
Mineração multi-relacional: o algoritmo GFP-growth Pizzi, Luciene Cristina Tipos específicos de bancos de dados Mineração multi-relacional Data mining (Mineração de dados) CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Mineração multi-relacional: o algoritmo GFP-growth |
title_full |
Mineração multi-relacional: o algoritmo GFP-growth |
title_fullStr |
Mineração multi-relacional: o algoritmo GFP-growth |
title_full_unstemmed |
Mineração multi-relacional: o algoritmo GFP-growth |
title_sort |
Mineração multi-relacional: o algoritmo GFP-growth |
author |
Pizzi, Luciene Cristina |
author_facet |
Pizzi, Luciene Cristina |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=N366295 |
dc.contributor.author.fl_str_mv |
Pizzi, Luciene Cristina |
dc.contributor.advisor1.fl_str_mv |
Vieira, Marina Teresa Pires |
dc.contributor.advisor1Lattes.fl_str_mv |
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4785837E4 |
dc.contributor.authorID.fl_str_mv |
cba9b978-b014-4161-a5da-8237af8b2054 |
contributor_str_mv |
Vieira, Marina Teresa Pires |
dc.subject.por.fl_str_mv |
Tipos específicos de bancos de dados Mineração multi-relacional Data mining (Mineração de dados) |
topic |
Tipos específicos de bancos de dados Mineração multi-relacional Data mining (Mineração de dados) CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Data mining is the phase of the knowledge discovery in database process where an algorithm is applied to the available data, in order to prove a hypothesis or discover a still unknown pattern. The traditional data mining techniques can deal only with single tables; however it is interesting to look for patterns involving several related tables, aiming to analyze the existing relation between the entities present in one table and the data of the same entities present in another table. Depending on the relationship existing between these tables, applying a traditional algorithm to the joint table is not sufficient, as the joint table may contain duplicated attribute values which interfere in the analysis process of the generated rules. In order to solve this problem, this project adopts an approach which consists on looking for association rules mining the joint table. The adopted process considers the groups of tuples, where each group is formed by tuples of the same entity. Following this approach the GFP-Growth algorithm was developed, which is presented in this monograph along with its results and comparisons with other multi-relational algorithms. |
publishDate |
2006 |
dc.date.issued.fl_str_mv |
2006-05-25 |
dc.date.available.fl_str_mv |
2007-08-16 2016-06-02T19:05:21Z |
dc.date.accessioned.fl_str_mv |
2016-06-02T19:05:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PIZZI, Luciene Cristina. Mineração multi-relacional: o algoritmo GFP-growth.. 2006. 118 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2006. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/332 |
identifier_str_mv |
PIZZI, Luciene Cristina. Mineração multi-relacional: o algoritmo GFP-growth.. 2006. 118 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2006. |
url |
https://repositorio.ufscar.br/handle/ufscar/332 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
-1 -1 |
dc.relation.authority.fl_str_mv |
dae3c046-97c0-4ae0-93a9-d5b46cac186c |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/332/1/DissLCP.pdf https://repositorio.ufscar.br/bitstream/ufscar/332/2/DissLCP.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/332/3/DissLCP.pdf.jpg |
bitstream.checksum.fl_str_mv |
728208bb18c724a37e9c9e51c0521b56 ea1c25987c17ac8418e02749bd88b7c5 aa952ecea3c4755c8d6aedc93b7eb1b6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715501908492288 |