Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | preprint |
Idioma: | spa |
Título da fonte: | SciELO Preprints |
Texto Completo: | https://preprints.scielo.org/index.php/scielo/preprint/view/5795 |
Resumo: | Introduction: Previous knowledge in the scientific literature on clinical prediction models in patients with Covid-19 may be useful for the development of new research. Objective: We describe the sources, authors, documents and key issues that are part of the research front. Identify which models, outcome variables, predictors and algorithms have been relevant. We Identify to what extent the available models could meet the quality attributes and what characteristics they must have to be applicablein the Cuban context. Methods: A review and scientometric analysis was carried out on the research in development and validation of clinical predictive models for Covid-19. The scientometric indicators were used and a thematic map was made for the analysisof the conceptual structure of the subject.Results: The subject was of great interest with papers published in the highest level journals. It is possible to distinguish a context of low and high risk application according to the primary and secondary health levels. The systematic reviewpublished by Wynants et al. was the publication with the greatest impact and an important source for the identification of models, main components, as well as possible causes of bias.Conclusions: The literature recognizes that most of the published models are not recommended for general use in clinical practice, so it is an open research front. However, the data obtained could be useful for the development and validation ofCuban models. |
id |
SCI-1_feadaa5083f4fc08360df97bd312ebbb |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/5795 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patientsEstado y tendencias en la investigación sobre modelos de predicción clínica para la estratificación del riesgo de severidad en pacientes confirmados de Covid-19Situação e tendências em pesquisas sobre modelos de previsão para a estratificação do risco de gravidade em pacientes confirmado de Covid-19prognosistriagetheoretical modelscovid-19sars cov-2pandemicpronósticotriajemodelos teóricoscovid-19sars cov-2pandemiaIntroduction: Previous knowledge in the scientific literature on clinical prediction models in patients with Covid-19 may be useful for the development of new research. Objective: We describe the sources, authors, documents and key issues that are part of the research front. Identify which models, outcome variables, predictors and algorithms have been relevant. We Identify to what extent the available models could meet the quality attributes and what characteristics they must have to be applicablein the Cuban context. Methods: A review and scientometric analysis was carried out on the research in development and validation of clinical predictive models for Covid-19. The scientometric indicators were used and a thematic map was made for the analysisof the conceptual structure of the subject.Results: The subject was of great interest with papers published in the highest level journals. It is possible to distinguish a context of low and high risk application according to the primary and secondary health levels. The systematic reviewpublished by Wynants et al. was the publication with the greatest impact and an important source for the identification of models, main components, as well as possible causes of bias.Conclusions: The literature recognizes that most of the published models are not recommended for general use in clinical practice, so it is an open research front. However, the data obtained could be useful for the development and validation ofCuban models.Introducción: El conocimiento previo en literatura científica sobre modelos de predicción clínica en pacientes con Covid-19 puede ser de utilidad para el desarrollo de nuevas investigaciones.Objetivo: Describir las fuentes, autores, documentos y temas clave que forman parte del frente de investigación. Identificar qué modelos, variables de resultado, predictores y algoritmos han resultado relevantes. Identificar en qué medida los modelos disponibles podrían cumplir con los atributos de calidad y qué características deberían poseer para ser aplicables en el contexto cubano.Métodos: Se realizó una revisión y análisis cienciométrico sobre la investigación en desarrollo y validación de modelos de predicción clínica en Covid-19. Se utilizaron indicadores cienciométricos y se realizó un mapa temático para el análisis de la estructura conceptual del tema.Resultados: El tema resultó de gran interés con trabajos publicados en las revistas de más alto nivel. Es posible distinguir un contexto de aplicación de bajo y alto riesgo acorde con el nivel primario y secundario de salud. La revisión sistemática publicada por Wynants y colaboradores constituyó la publicación de mayor impacto y una fuente importante para la identificación de modelos, principales componentes, así como posibles causas de sesgos.Conclusiones: La literatura reconoce que la mayoría de los modelos publicados no se recomiendan para su uso generalizado en la práctica clínica por lo que es un frente de investigación abierto. Sin embargo, los datos obtenidos podrían ser de utilidad para el desarrollo y validación de modelos en Cuba.Introdução: O conhecimento prévio na literatura científica sobre modelos de predição clínica em pacientes com Covid-19 pode ser útil para o desenvolvimento de novas pesquisas.Objetivo: Descrever as fontes, autores, documentos e questões-chave que fazem parte da frente de pesquisa. Identifique quais modelos, variáveis de resultado, preditores e algoritmos foram relevantes. Identificar em que medida os modelos disponíveis poderiam atender aos atributos de qualidade e quais características deveriam ter para serem aplicáveis no contexto cubano.Métodos: Foi realizada uma revisão e análise cientométrica sobre as pesquisas em desenvolvimento e validação de modelos de predição clínica em Covid-19. Foram utilizados indicadores cientométricos e elaborado um mapa temático para análise da estrutura conceitual do assunto.Resultados: O assunto foi de grande interesse com artigos publicados em periódicos de alto nível. É possível distinguir um contexto de aplicação de baixo e alto risco de acordo com o nível primário e secundário de saúde. A revisão sistemática publicada por Wynants et al., foi a publicação de maior impacto e uma fonte importante para a identificação de modelos, componentes principais, bem como possíveis causas de viés.Conclusões: A literatura reconhece que a maioria dos modelos publicados não são recomendados para uso geral na prática clínica, por isso é uma frente de pesquisa aberta. No entanto, os dados obtidos podem ser úteis para o desenvolvimento e validação de modelos em Cuba.SciELO PreprintsSciELO PreprintsSciELO Preprints2023-03-27info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/579510.1590/SciELOPreprints.5795spahttps://preprints.scielo.org/index.php/scielo/article/view/5795/11151Copyright (c) 2023 Maicel Monzón-Peréz, Lizet Sanchez-Valdés, Agustín Lage-Dávila https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMonzón-Peréz, MaicelSanchez-Valdés, LizetLage-Dávila , Agustínreponame:SciELO Preprintsinstname:Scientific Electronic Library Online (SCIELO)instacron:SCI2023-03-21T22:10:16Zoai:ops.preprints.scielo.org:preprint/5795Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2023-03-21T22:10:16SciELO Preprints - Scientific Electronic Library Online (SCIELO)false |
dc.title.none.fl_str_mv |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients Estado y tendencias en la investigación sobre modelos de predicción clínica para la estratificación del riesgo de severidad en pacientes confirmados de Covid-19 Situação e tendências em pesquisas sobre modelos de previsão para a estratificação do risco de gravidade em pacientes confirmado de Covid-19 |
title |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients |
spellingShingle |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients Monzón-Peréz, Maicel prognosis triage theoretical models covid-19 sars cov-2 pandemic pronóstico triaje modelos teóricos covid-19 sars cov-2 pandemia |
title_short |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients |
title_full |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients |
title_fullStr |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients |
title_full_unstemmed |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients |
title_sort |
Status and trends in research on clinical prediction models for severity risk stratification in confirmed Covid-19 patients |
author |
Monzón-Peréz, Maicel |
author_facet |
Monzón-Peréz, Maicel Sanchez-Valdés, Lizet Lage-Dávila , Agustín |
author_role |
author |
author2 |
Sanchez-Valdés, Lizet Lage-Dávila , Agustín |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Monzón-Peréz, Maicel Sanchez-Valdés, Lizet Lage-Dávila , Agustín |
dc.subject.por.fl_str_mv |
prognosis triage theoretical models covid-19 sars cov-2 pandemic pronóstico triaje modelos teóricos covid-19 sars cov-2 pandemia |
topic |
prognosis triage theoretical models covid-19 sars cov-2 pandemic pronóstico triaje modelos teóricos covid-19 sars cov-2 pandemia |
description |
Introduction: Previous knowledge in the scientific literature on clinical prediction models in patients with Covid-19 may be useful for the development of new research. Objective: We describe the sources, authors, documents and key issues that are part of the research front. Identify which models, outcome variables, predictors and algorithms have been relevant. We Identify to what extent the available models could meet the quality attributes and what characteristics they must have to be applicablein the Cuban context. Methods: A review and scientometric analysis was carried out on the research in development and validation of clinical predictive models for Covid-19. The scientometric indicators were used and a thematic map was made for the analysisof the conceptual structure of the subject.Results: The subject was of great interest with papers published in the highest level journals. It is possible to distinguish a context of low and high risk application according to the primary and secondary health levels. The systematic reviewpublished by Wynants et al. was the publication with the greatest impact and an important source for the identification of models, main components, as well as possible causes of bias.Conclusions: The literature recognizes that most of the published models are not recommended for general use in clinical practice, so it is an open research front. However, the data obtained could be useful for the development and validation ofCuban models. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-27 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/5795 10.1590/SciELOPreprints.5795 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/5795 |
identifier_str_mv |
10.1590/SciELOPreprints.5795 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/article/view/5795/11151 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Maicel Monzón-Peréz, Lizet Sanchez-Valdés, Agustín Lage-Dávila https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Maicel Monzón-Peréz, Lizet Sanchez-Valdés, Agustín Lage-Dávila https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:Scientific Electronic Library Online (SCIELO) instacron:SCI |
instname_str |
Scientific Electronic Library Online (SCIELO) |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - Scientific Electronic Library Online (SCIELO) |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1797047811171155968 |