Daily and monthly sugar price forecasting using the mixture of local expert models

Detalhes bibliográficos
Autor(a) principal: Melo,Brício de
Data de Publicação: 2007
Outros Autores: Milioni,Armando Zeferino, Nascimento Júnior,Cairo Lucio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382007000200003
Resumo: This article concerns the application of the Mixture of Local Expert Models (MLEM) to predict the daily and monthly price of the Sugar No. 14 contract in the New York Board of Trade. This technique can be seen as a forecasting method that performs data exploratory analysis and mathematical modeling simultaneously. Given a set of data points, the basic idea is as follows: 1) a Kohonen Neural Network is used to divide the data into clusters of points, 2) several modeling techniques are then used to construct competing models for each cluster, 3) the best model for each cluster is then selected and called the Local Expert Model. Finally, a so-called Gating Network combines the outputs of all Local Expert Models. For comparison purposes, the same modeling techniques are also evaluated when acting as Global Experts, i. e., when the technique uses the entire data set without any clustering.
id SOBRAPO-1_0b661893aeaec73cd8464b0b4e6fbc58
oai_identifier_str oai:scielo:S0101-74382007000200003
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling Daily and monthly sugar price forecasting using the mixture of local expert modelsmixture of local expert modelsforecasting time seriesneural networksThis article concerns the application of the Mixture of Local Expert Models (MLEM) to predict the daily and monthly price of the Sugar No. 14 contract in the New York Board of Trade. This technique can be seen as a forecasting method that performs data exploratory analysis and mathematical modeling simultaneously. Given a set of data points, the basic idea is as follows: 1) a Kohonen Neural Network is used to divide the data into clusters of points, 2) several modeling techniques are then used to construct competing models for each cluster, 3) the best model for each cluster is then selected and called the Local Expert Model. Finally, a so-called Gating Network combines the outputs of all Local Expert Models. For comparison purposes, the same modeling techniques are also evaluated when acting as Global Experts, i. e., when the technique uses the entire data set without any clustering.Sociedade Brasileira de Pesquisa Operacional2007-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382007000200003Pesquisa Operacional v.27 n.2 2007reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382007000200003info:eu-repo/semantics/openAccessMelo,Brício deMilioni,Armando ZeferinoNascimento Júnior,Cairo Lucioeng2007-09-25T00:00:00Zoai:scielo:S0101-74382007000200003Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2007-09-25T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv Daily and monthly sugar price forecasting using the mixture of local expert models
title Daily and monthly sugar price forecasting using the mixture of local expert models
spellingShingle Daily and monthly sugar price forecasting using the mixture of local expert models
Melo,Brício de
mixture of local expert models
forecasting time series
neural networks
title_short Daily and monthly sugar price forecasting using the mixture of local expert models
title_full Daily and monthly sugar price forecasting using the mixture of local expert models
title_fullStr Daily and monthly sugar price forecasting using the mixture of local expert models
title_full_unstemmed Daily and monthly sugar price forecasting using the mixture of local expert models
title_sort Daily and monthly sugar price forecasting using the mixture of local expert models
author Melo,Brício de
author_facet Melo,Brício de
Milioni,Armando Zeferino
Nascimento Júnior,Cairo Lucio
author_role author
author2 Milioni,Armando Zeferino
Nascimento Júnior,Cairo Lucio
author2_role author
author
dc.contributor.author.fl_str_mv Melo,Brício de
Milioni,Armando Zeferino
Nascimento Júnior,Cairo Lucio
dc.subject.por.fl_str_mv mixture of local expert models
forecasting time series
neural networks
topic mixture of local expert models
forecasting time series
neural networks
description This article concerns the application of the Mixture of Local Expert Models (MLEM) to predict the daily and monthly price of the Sugar No. 14 contract in the New York Board of Trade. This technique can be seen as a forecasting method that performs data exploratory analysis and mathematical modeling simultaneously. Given a set of data points, the basic idea is as follows: 1) a Kohonen Neural Network is used to divide the data into clusters of points, 2) several modeling techniques are then used to construct competing models for each cluster, 3) the best model for each cluster is then selected and called the Local Expert Model. Finally, a so-called Gating Network combines the outputs of all Local Expert Models. For comparison purposes, the same modeling techniques are also evaluated when acting as Global Experts, i. e., when the technique uses the entire data set without any clustering.
publishDate 2007
dc.date.none.fl_str_mv 2007-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382007000200003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382007000200003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0101-74382007000200003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.27 n.2 2007
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318016640319488