Daily and monthly sugar price forecasting using the mixture of local expert models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382007000200003 |
Resumo: | This article concerns the application of the Mixture of Local Expert Models (MLEM) to predict the daily and monthly price of the Sugar No. 14 contract in the New York Board of Trade. This technique can be seen as a forecasting method that performs data exploratory analysis and mathematical modeling simultaneously. Given a set of data points, the basic idea is as follows: 1) a Kohonen Neural Network is used to divide the data into clusters of points, 2) several modeling techniques are then used to construct competing models for each cluster, 3) the best model for each cluster is then selected and called the Local Expert Model. Finally, a so-called Gating Network combines the outputs of all Local Expert Models. For comparison purposes, the same modeling techniques are also evaluated when acting as Global Experts, i. e., when the technique uses the entire data set without any clustering. |
id |
SOBRAPO-1_0b661893aeaec73cd8464b0b4e6fbc58 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382007000200003 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
Daily and monthly sugar price forecasting using the mixture of local expert modelsmixture of local expert modelsforecasting time seriesneural networksThis article concerns the application of the Mixture of Local Expert Models (MLEM) to predict the daily and monthly price of the Sugar No. 14 contract in the New York Board of Trade. This technique can be seen as a forecasting method that performs data exploratory analysis and mathematical modeling simultaneously. Given a set of data points, the basic idea is as follows: 1) a Kohonen Neural Network is used to divide the data into clusters of points, 2) several modeling techniques are then used to construct competing models for each cluster, 3) the best model for each cluster is then selected and called the Local Expert Model. Finally, a so-called Gating Network combines the outputs of all Local Expert Models. For comparison purposes, the same modeling techniques are also evaluated when acting as Global Experts, i. e., when the technique uses the entire data set without any clustering.Sociedade Brasileira de Pesquisa Operacional2007-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382007000200003Pesquisa Operacional v.27 n.2 2007reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382007000200003info:eu-repo/semantics/openAccessMelo,Brício deMilioni,Armando ZeferinoNascimento Júnior,Cairo Lucioeng2007-09-25T00:00:00Zoai:scielo:S0101-74382007000200003Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2007-09-25T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
Daily and monthly sugar price forecasting using the mixture of local expert models |
title |
Daily and monthly sugar price forecasting using the mixture of local expert models |
spellingShingle |
Daily and monthly sugar price forecasting using the mixture of local expert models Melo,Brício de mixture of local expert models forecasting time series neural networks |
title_short |
Daily and monthly sugar price forecasting using the mixture of local expert models |
title_full |
Daily and monthly sugar price forecasting using the mixture of local expert models |
title_fullStr |
Daily and monthly sugar price forecasting using the mixture of local expert models |
title_full_unstemmed |
Daily and monthly sugar price forecasting using the mixture of local expert models |
title_sort |
Daily and monthly sugar price forecasting using the mixture of local expert models |
author |
Melo,Brício de |
author_facet |
Melo,Brício de Milioni,Armando Zeferino Nascimento Júnior,Cairo Lucio |
author_role |
author |
author2 |
Milioni,Armando Zeferino Nascimento Júnior,Cairo Lucio |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Melo,Brício de Milioni,Armando Zeferino Nascimento Júnior,Cairo Lucio |
dc.subject.por.fl_str_mv |
mixture of local expert models forecasting time series neural networks |
topic |
mixture of local expert models forecasting time series neural networks |
description |
This article concerns the application of the Mixture of Local Expert Models (MLEM) to predict the daily and monthly price of the Sugar No. 14 contract in the New York Board of Trade. This technique can be seen as a forecasting method that performs data exploratory analysis and mathematical modeling simultaneously. Given a set of data points, the basic idea is as follows: 1) a Kohonen Neural Network is used to divide the data into clusters of points, 2) several modeling techniques are then used to construct competing models for each cluster, 3) the best model for each cluster is then selected and called the Local Expert Model. Finally, a so-called Gating Network combines the outputs of all Local Expert Models. For comparison purposes, the same modeling techniques are also evaluated when acting as Global Experts, i. e., when the technique uses the entire data set without any clustering. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382007000200003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382007000200003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382007000200003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.27 n.2 2007 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318016640319488 |