A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000300007 |
Resumo: | This work analyses the performance of three different population-based metaheuristic approaches applied to Fuzzy cognitive maps (FCM) learning in qualitative control of processes. Fuzzy cognitive maps permit to include the previous specialist knowledge in the control rule. Particularly, Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and an Ant Colony Optimization (ACO) are considered for obtaining appropriate weight matrices for learning the FCM. A statistical convergence analysis within 10000 simulations of each algorithm is presented. In order to validate the proposed approach, two industrial control process problems previously described in the literature are considered in this work. |
id |
SOBRAPO-1_46ee658797c9f27c9150289674a6196f |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382013000300007 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learningFuzzy Cognitive MapsParticle Swarm OptimizationGenetic Algorithmprocess controlstatistical convergence analysisThis work analyses the performance of three different population-based metaheuristic approaches applied to Fuzzy cognitive maps (FCM) learning in qualitative control of processes. Fuzzy cognitive maps permit to include the previous specialist knowledge in the control rule. Particularly, Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and an Ant Colony Optimization (ACO) are considered for obtaining appropriate weight matrices for learning the FCM. A statistical convergence analysis within 10000 simulations of each algorithm is presented. In order to validate the proposed approach, two industrial control process problems previously described in the literature are considered in this work.Sociedade Brasileira de Pesquisa Operacional2013-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000300007Pesquisa Operacional v.33 n.3 2013reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/S0101-74382013005000009info:eu-repo/semantics/openAccessAngélico,Bruno A.Mendonça,MárcioAbrão,TaufikArruda,Lúcia Valéria R. deeng2013-12-16T00:00:00Zoai:scielo:S0101-74382013000300007Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2013-12-16T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning |
title |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning |
spellingShingle |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning Angélico,Bruno A. Fuzzy Cognitive Maps Particle Swarm Optimization Genetic Algorithm process control statistical convergence analysis |
title_short |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning |
title_full |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning |
title_fullStr |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning |
title_full_unstemmed |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning |
title_sort |
A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning |
author |
Angélico,Bruno A. |
author_facet |
Angélico,Bruno A. Mendonça,Márcio Abrão,Taufik Arruda,Lúcia Valéria R. de |
author_role |
author |
author2 |
Mendonça,Márcio Abrão,Taufik Arruda,Lúcia Valéria R. de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Angélico,Bruno A. Mendonça,Márcio Abrão,Taufik Arruda,Lúcia Valéria R. de |
dc.subject.por.fl_str_mv |
Fuzzy Cognitive Maps Particle Swarm Optimization Genetic Algorithm process control statistical convergence analysis |
topic |
Fuzzy Cognitive Maps Particle Swarm Optimization Genetic Algorithm process control statistical convergence analysis |
description |
This work analyses the performance of three different population-based metaheuristic approaches applied to Fuzzy cognitive maps (FCM) learning in qualitative control of processes. Fuzzy cognitive maps permit to include the previous specialist knowledge in the control rule. Particularly, Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and an Ant Colony Optimization (ACO) are considered for obtaining appropriate weight matrices for learning the FCM. A statistical convergence analysis within 10000 simulations of each algorithm is presented. In order to validate the proposed approach, two industrial control process problems previously described in the literature are considered in this work. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000300007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382013000300007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-74382013005000009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.33 n.3 2013 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318017727692800 |