Modeling implicit bias with fuzzy cognitive maps

Detalhes bibliográficos
Autor(a) principal: Nápoles, Gonzalo
Data de Publicação: 2022
Outros Autores: Grau, Isel, Concepción, Leonardo, Koutsoviti Koumeri, Lisa, Papa, João Paulo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.neucom.2022.01.070
http://hdl.handle.net/11449/234080
Resumo: This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets where features can be numeric or discrete. In our proposal, problem features are mapped to neural concepts that are initially activated by experts when running what-if simulations, whereas weights connecting the neural concepts represent absolute correlation/association patterns between features. In addition, we introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating. Another advantage of this new reasoning mechanism is that it can easily be controlled by regulating nonlinearity when updating neurons’ activation values in each iteration. Finally, we study the convergence of our model and derive analytical conditions concerning the existence and unicity of fixed-point attractors.
id UNSP_6db57a414c44bf7a597307130324dc6c
oai_identifier_str oai:repositorio.unesp.br:11449/234080
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Modeling implicit bias with fuzzy cognitive mapsConvergence analysisFairnessFuzzy cognitive mapsImplicit biasThis paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets where features can be numeric or discrete. In our proposal, problem features are mapped to neural concepts that are initially activated by experts when running what-if simulations, whereas weights connecting the neural concepts represent absolute correlation/association patterns between features. In addition, we introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating. Another advantage of this new reasoning mechanism is that it can easily be controlled by regulating nonlinearity when updating neurons’ activation values in each iteration. Finally, we study the convergence of our model and derive analytical conditions concerning the existence and unicity of fixed-point attractors.Department of Cognitive Science & Artificial Intelligence Tilburg UniversityInformation Systems Group Eindhoven University of TechnologyBusiness Informatics Research Group Hasselt UniversityDepartment of Computer Science Central University of Las VillasDepartment of Computing São Paulo State UniversityDepartment of Computing São Paulo State UniversityTilburg UniversityEindhoven University of TechnologyHasselt UniversityCentral University of Las VillasUniversidade Estadual Paulista (UNESP)Nápoles, GonzaloGrau, IselConcepción, LeonardoKoutsoviti Koumeri, LisaPapa, João Paulo [UNESP]2022-05-01T13:11:37Z2022-05-01T13:11:37Z2022-04-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article33-45http://dx.doi.org/10.1016/j.neucom.2022.01.070Neurocomputing, v. 481, p. 33-45.1872-82860925-2312http://hdl.handle.net/11449/23408010.1016/j.neucom.2022.01.0702-s2.0-85123864658Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNeurocomputinginfo:eu-repo/semantics/openAccess2024-04-23T16:10:49Zoai:repositorio.unesp.br:11449/234080Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:39:37.383255Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Modeling implicit bias with fuzzy cognitive maps
title Modeling implicit bias with fuzzy cognitive maps
spellingShingle Modeling implicit bias with fuzzy cognitive maps
Nápoles, Gonzalo
Convergence analysis
Fairness
Fuzzy cognitive maps
Implicit bias
title_short Modeling implicit bias with fuzzy cognitive maps
title_full Modeling implicit bias with fuzzy cognitive maps
title_fullStr Modeling implicit bias with fuzzy cognitive maps
title_full_unstemmed Modeling implicit bias with fuzzy cognitive maps
title_sort Modeling implicit bias with fuzzy cognitive maps
author Nápoles, Gonzalo
author_facet Nápoles, Gonzalo
Grau, Isel
Concepción, Leonardo
Koutsoviti Koumeri, Lisa
Papa, João Paulo [UNESP]
author_role author
author2 Grau, Isel
Concepción, Leonardo
Koutsoviti Koumeri, Lisa
Papa, João Paulo [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Tilburg University
Eindhoven University of Technology
Hasselt University
Central University of Las Villas
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Nápoles, Gonzalo
Grau, Isel
Concepción, Leonardo
Koutsoviti Koumeri, Lisa
Papa, João Paulo [UNESP]
dc.subject.por.fl_str_mv Convergence analysis
Fairness
Fuzzy cognitive maps
Implicit bias
topic Convergence analysis
Fairness
Fuzzy cognitive maps
Implicit bias
description This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets where features can be numeric or discrete. In our proposal, problem features are mapped to neural concepts that are initially activated by experts when running what-if simulations, whereas weights connecting the neural concepts represent absolute correlation/association patterns between features. In addition, we introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating. Another advantage of this new reasoning mechanism is that it can easily be controlled by regulating nonlinearity when updating neurons’ activation values in each iteration. Finally, we study the convergence of our model and derive analytical conditions concerning the existence and unicity of fixed-point attractors.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-01T13:11:37Z
2022-05-01T13:11:37Z
2022-04-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.neucom.2022.01.070
Neurocomputing, v. 481, p. 33-45.
1872-8286
0925-2312
http://hdl.handle.net/11449/234080
10.1016/j.neucom.2022.01.070
2-s2.0-85123864658
url http://dx.doi.org/10.1016/j.neucom.2022.01.070
http://hdl.handle.net/11449/234080
identifier_str_mv Neurocomputing, v. 481, p. 33-45.
1872-8286
0925-2312
10.1016/j.neucom.2022.01.070
2-s2.0-85123864658
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Neurocomputing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 33-45
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128962832891904