Modeling implicit bias with fuzzy cognitive maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.neucom.2022.01.070 http://hdl.handle.net/11449/234080 |
Resumo: | This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets where features can be numeric or discrete. In our proposal, problem features are mapped to neural concepts that are initially activated by experts when running what-if simulations, whereas weights connecting the neural concepts represent absolute correlation/association patterns between features. In addition, we introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating. Another advantage of this new reasoning mechanism is that it can easily be controlled by regulating nonlinearity when updating neurons’ activation values in each iteration. Finally, we study the convergence of our model and derive analytical conditions concerning the existence and unicity of fixed-point attractors. |
id |
UNSP_6db57a414c44bf7a597307130324dc6c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/234080 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Modeling implicit bias with fuzzy cognitive mapsConvergence analysisFairnessFuzzy cognitive mapsImplicit biasThis paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets where features can be numeric or discrete. In our proposal, problem features are mapped to neural concepts that are initially activated by experts when running what-if simulations, whereas weights connecting the neural concepts represent absolute correlation/association patterns between features. In addition, we introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating. Another advantage of this new reasoning mechanism is that it can easily be controlled by regulating nonlinearity when updating neurons’ activation values in each iteration. Finally, we study the convergence of our model and derive analytical conditions concerning the existence and unicity of fixed-point attractors.Department of Cognitive Science & Artificial Intelligence Tilburg UniversityInformation Systems Group Eindhoven University of TechnologyBusiness Informatics Research Group Hasselt UniversityDepartment of Computer Science Central University of Las VillasDepartment of Computing São Paulo State UniversityDepartment of Computing São Paulo State UniversityTilburg UniversityEindhoven University of TechnologyHasselt UniversityCentral University of Las VillasUniversidade Estadual Paulista (UNESP)Nápoles, GonzaloGrau, IselConcepción, LeonardoKoutsoviti Koumeri, LisaPapa, João Paulo [UNESP]2022-05-01T13:11:37Z2022-05-01T13:11:37Z2022-04-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article33-45http://dx.doi.org/10.1016/j.neucom.2022.01.070Neurocomputing, v. 481, p. 33-45.1872-82860925-2312http://hdl.handle.net/11449/23408010.1016/j.neucom.2022.01.0702-s2.0-85123864658Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNeurocomputinginfo:eu-repo/semantics/openAccess2024-04-23T16:10:49Zoai:repositorio.unesp.br:11449/234080Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:39:37.383255Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Modeling implicit bias with fuzzy cognitive maps |
title |
Modeling implicit bias with fuzzy cognitive maps |
spellingShingle |
Modeling implicit bias with fuzzy cognitive maps Nápoles, Gonzalo Convergence analysis Fairness Fuzzy cognitive maps Implicit bias |
title_short |
Modeling implicit bias with fuzzy cognitive maps |
title_full |
Modeling implicit bias with fuzzy cognitive maps |
title_fullStr |
Modeling implicit bias with fuzzy cognitive maps |
title_full_unstemmed |
Modeling implicit bias with fuzzy cognitive maps |
title_sort |
Modeling implicit bias with fuzzy cognitive maps |
author |
Nápoles, Gonzalo |
author_facet |
Nápoles, Gonzalo Grau, Isel Concepción, Leonardo Koutsoviti Koumeri, Lisa Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Grau, Isel Concepción, Leonardo Koutsoviti Koumeri, Lisa Papa, João Paulo [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Tilburg University Eindhoven University of Technology Hasselt University Central University of Las Villas Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Nápoles, Gonzalo Grau, Isel Concepción, Leonardo Koutsoviti Koumeri, Lisa Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Convergence analysis Fairness Fuzzy cognitive maps Implicit bias |
topic |
Convergence analysis Fairness Fuzzy cognitive maps Implicit bias |
description |
This paper presents a Fuzzy Cognitive Map model to quantify implicit bias in structured datasets where features can be numeric or discrete. In our proposal, problem features are mapped to neural concepts that are initially activated by experts when running what-if simulations, whereas weights connecting the neural concepts represent absolute correlation/association patterns between features. In addition, we introduce a new reasoning mechanism equipped with a normalization-like transfer function that prevents neurons from saturating. Another advantage of this new reasoning mechanism is that it can easily be controlled by regulating nonlinearity when updating neurons’ activation values in each iteration. Finally, we study the convergence of our model and derive analytical conditions concerning the existence and unicity of fixed-point attractors. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-01T13:11:37Z 2022-05-01T13:11:37Z 2022-04-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.neucom.2022.01.070 Neurocomputing, v. 481, p. 33-45. 1872-8286 0925-2312 http://hdl.handle.net/11449/234080 10.1016/j.neucom.2022.01.070 2-s2.0-85123864658 |
url |
http://dx.doi.org/10.1016/j.neucom.2022.01.070 http://hdl.handle.net/11449/234080 |
identifier_str_mv |
Neurocomputing, v. 481, p. 33-45. 1872-8286 0925-2312 10.1016/j.neucom.2022.01.070 2-s2.0-85123864658 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Neurocomputing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
33-45 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128962832891904 |