BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa operacional (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382022000100211 |
Resumo: | ABSTRACT In this paper we explore a Bayesian approach for stable distributions in presence of covariates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach. |
id |
SOBRAPO-1_5102cc0a00955f638a0c5cb323090bb1 |
---|---|
oai_identifier_str |
oai:scielo:S0101-74382022000100211 |
network_acronym_str |
SOBRAPO-1 |
network_name_str |
Pesquisa operacional (Online) |
repository_id_str |
|
spelling |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUEStable distributionsBayesian approachregression modelsprior distributionsMCMC methodsABSTRACT In this paper we explore a Bayesian approach for stable distributions in presence of covariates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach.Sociedade Brasileira de Pesquisa Operacional2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382022000100211Pesquisa Operacional v.42 2022reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2022.042.00254533info:eu-repo/semantics/openAccessAchcar,Jorge AlbertoSouza,Roberto Molina deBussola,DaianeMoala,Fernando A.eng2022-06-08T00:00:00Zoai:scielo:S0101-74382022000100211Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2022-06-08T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false |
dc.title.none.fl_str_mv |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES |
title |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES |
spellingShingle |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES Achcar,Jorge Alberto table distributions Bayesian approach regression models prior distributions MCMC methods |
title_short |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES |
title_full |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES |
title_fullStr |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES |
title_full_unstemmed |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES |
title_sort |
BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES |
author |
Achcar,Jorge Alberto |
author_facet |
Achcar,Jorge Alberto Souza,Roberto Molina de Bussola,Daiane Moala,Fernando A. |
author_role |
author |
author2 |
Souza,Roberto Molina de Bussola,Daiane Moala,Fernando A. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Achcar,Jorge Alberto Souza,Roberto Molina de Bussola,Daiane Moala,Fernando A. |
dc.subject.por.fl_str_mv |
table distributions Bayesian approach regression models prior distributions MCMC methods |
topic |
table distributions Bayesian approach regression models prior distributions MCMC methods |
description |
ABSTRACT In this paper we explore a Bayesian approach for stable distributions in presence of covariates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382022000100211 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382022000100211 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0101-7438.2022.042.00254533 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Pesquisa Operacional |
dc.source.none.fl_str_mv |
Pesquisa Operacional v.42 2022 reponame:Pesquisa operacional (Online) instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) instacron:SOBRAPO |
instname_str |
Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
instacron_str |
SOBRAPO |
institution |
SOBRAPO |
reponame_str |
Pesquisa operacional (Online) |
collection |
Pesquisa operacional (Online) |
repository.name.fl_str_mv |
Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO) |
repository.mail.fl_str_mv |
||sobrapo@sobrapo.org.br |
_version_ |
1750318018504687616 |