BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES

Detalhes bibliográficos
Autor(a) principal: Achcar,Jorge Alberto
Data de Publicação: 2022
Outros Autores: Souza,Roberto Molina de, Bussola,Daiane, Moala,Fernando A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382022000100211
Resumo: ABSTRACT In this paper we explore a Bayesian approach for stable distributions in presence of covariates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach.
id SOBRAPO-1_5102cc0a00955f638a0c5cb323090bb1
oai_identifier_str oai:scielo:S0101-74382022000100211
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUEStable distributionsBayesian approachregression modelsprior distributionsMCMC methodsABSTRACT In this paper we explore a Bayesian approach for stable distributions in presence of covariates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach.Sociedade Brasileira de Pesquisa Operacional2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382022000100211Pesquisa Operacional v.42 2022reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2022.042.00254533info:eu-repo/semantics/openAccessAchcar,Jorge AlbertoSouza,Roberto Molina deBussola,DaianeMoala,Fernando A.eng2022-06-08T00:00:00Zoai:scielo:S0101-74382022000100211Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2022-06-08T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
spellingShingle BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
Achcar,Jorge Alberto
table distributions
Bayesian approach
regression models
prior distributions
MCMC methods
title_short BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title_full BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title_fullStr BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title_full_unstemmed BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title_sort BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
author Achcar,Jorge Alberto
author_facet Achcar,Jorge Alberto
Souza,Roberto Molina de
Bussola,Daiane
Moala,Fernando A.
author_role author
author2 Souza,Roberto Molina de
Bussola,Daiane
Moala,Fernando A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Achcar,Jorge Alberto
Souza,Roberto Molina de
Bussola,Daiane
Moala,Fernando A.
dc.subject.por.fl_str_mv table distributions
Bayesian approach
regression models
prior distributions
MCMC methods
topic table distributions
Bayesian approach
regression models
prior distributions
MCMC methods
description ABSTRACT In this paper we explore a Bayesian approach for stable distributions in presence of covariates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382022000100211
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382022000100211
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0101-7438.2022.042.00254533
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.42 2022
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318018504687616