BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES

Detalhes bibliográficos
Autor(a) principal: Achcar, Jorge Alberto
Data de Publicação: 2022
Outros Autores: Souza, Roberto Molina de, Bussola, Daiane, Moala, Fernando A. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/0101-7438.2022.042.00254533
http://hdl.handle.net/11449/240406
Resumo: In this paper we explore a Bayesian approach for stable distributions in presence of covari-ates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach.
id UNSP_25782f79544c1ceadcc25a47f973ce9f
oai_identifier_str oai:repositorio.unesp.br:11449/240406
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUESBayesian approachMCMC methodsprior distributionsregression modelstable distributionsIn this paper we explore a Bayesian approach for stable distributions in presence of covari-ates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach.University of São Paulo Department of Public Health, Av. Bandeirantes, 3900, Monte Alegre,SPFederal Technological University of Paraná Department of Mathematics, Av. Alberto Carazzai, 1640, Centro,PRSão Paulo State University Department of Statistics, R. Roberto Símonsen, 305, Centro Educacional,SPSão Paulo State University Department of Statistics, R. Roberto Símonsen, 305, Centro Educacional,SPUniversidade de São Paulo (USP)Federal Technological University of ParanáUniversidade Estadual Paulista (UNESP)Achcar, Jorge AlbertoSouza, Roberto Molina deBussola, DaianeMoala, Fernando A. [UNESP]2023-03-01T20:15:41Z2023-03-01T20:15:41Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1590/0101-7438.2022.042.00254533Pesquisa Operacional, v. 42.1678-51420101-7438http://hdl.handle.net/11449/24040610.1590/0101-7438.2022.042.002545332-s2.0-85133515891Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPesquisa Operacionalinfo:eu-repo/semantics/openAccess2023-03-01T20:15:41Zoai:repositorio.unesp.br:11449/240406Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:26:28.751575Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
spellingShingle BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
Achcar, Jorge Alberto
Bayesian approach
MCMC methods
prior distributions
regression models
table distributions
title_short BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title_full BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title_fullStr BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title_full_unstemmed BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
title_sort BAYESIAN ESTIMATION FOR THE STABLE DISTRIBUTIONS IN THE PRESENCE OF COVARIATES WITH APPLICATIONS IN CLINICAL ISSUES
author Achcar, Jorge Alberto
author_facet Achcar, Jorge Alberto
Souza, Roberto Molina de
Bussola, Daiane
Moala, Fernando A. [UNESP]
author_role author
author2 Souza, Roberto Molina de
Bussola, Daiane
Moala, Fernando A. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Federal Technological University of Paraná
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Achcar, Jorge Alberto
Souza, Roberto Molina de
Bussola, Daiane
Moala, Fernando A. [UNESP]
dc.subject.por.fl_str_mv Bayesian approach
MCMC methods
prior distributions
regression models
table distributions
topic Bayesian approach
MCMC methods
prior distributions
regression models
table distributions
description In this paper we explore a Bayesian approach for stable distributions in presence of covari-ates. This class of distribution has great flexibility for fitting asymmetric and heavy-tailed empirical data. These models are commonly used for data sets in finance and insurance. In this paper we show that these distributions can also be used to fit clinical data. Since there is not an analytical form for the density probability function which implies in serious difficulties to obtain the maximum likelihood estimators for the parameters, we use Bayesian methods with data augmentation techniques to get the inferences of interest. In this study we also discuss the choice of different prior distributions for the parameters considering regression models for the location and scale parameters of the stable distribution. We use MCMC (Markov Chain Monte Carlo) algorithms to generate samples from the posterior distributions in order to evaluate the point and interval estimators. A great simplification is obtained using the OpenBugs software. Two real data examples illustrate the applicability of the proposed modeling approach.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-03-01T20:15:41Z
2023-03-01T20:15:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/0101-7438.2022.042.00254533
Pesquisa Operacional, v. 42.
1678-5142
0101-7438
http://hdl.handle.net/11449/240406
10.1590/0101-7438.2022.042.00254533
2-s2.0-85133515891
url http://dx.doi.org/10.1590/0101-7438.2022.042.00254533
http://hdl.handle.net/11449/240406
identifier_str_mv Pesquisa Operacional, v. 42.
1678-5142
0101-7438
10.1590/0101-7438.2022.042.00254533
2-s2.0-85133515891
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pesquisa Operacional
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129521159766016