GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH

Detalhes bibliográficos
Autor(a) principal: Camara,Ana Julia A.
Data de Publicação: 2021
Outros Autores: Franco,Glaura C., Reisen,Valderio A., Bondon,Pascal
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa operacional (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382021000100206
Resumo: ABSTRACT The generalized additive model (GAM) has been used in many epidemiological studies where frequently the response variable is a nonnegative integer-valued time series. However, GAM assume that the observations are independent, which is generally not the case in time series. In this paper, an autoregressive moving average (ARMA) component is incorporated to the GAM. The resulting GAM-ARMA model is based on the generalized linear autoregressive moving average (GLARMA) model where some linear components are replaced by natural splines. Numerical simulations are presented and show that the ARMA component influences the estimation. In a real data analysis of the effects of air pollution on respiratory disease in the metropolitan area of Belo Horizonte, Brazil, it is shown that the proposed model presents a better fit when compared to the classical GAM approach, that does not take into account the autocorrelation of the data.
id SOBRAPO-1_7839256b5c67ed3eca2d6f005c61e13f
oai_identifier_str oai:scielo:S0101-74382021000100206
network_acronym_str SOBRAPO-1
network_name_str Pesquisa operacional (Online)
repository_id_str
spelling GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTHGAMARMA modelsemiparametric modelPoisson-valued time seriesABSTRACT The generalized additive model (GAM) has been used in many epidemiological studies where frequently the response variable is a nonnegative integer-valued time series. However, GAM assume that the observations are independent, which is generally not the case in time series. In this paper, an autoregressive moving average (ARMA) component is incorporated to the GAM. The resulting GAM-ARMA model is based on the generalized linear autoregressive moving average (GLARMA) model where some linear components are replaced by natural splines. Numerical simulations are presented and show that the ARMA component influences the estimation. In a real data analysis of the effects of air pollution on respiratory disease in the metropolitan area of Belo Horizonte, Brazil, it is shown that the proposed model presents a better fit when compared to the classical GAM approach, that does not take into account the autocorrelation of the data.Sociedade Brasileira de Pesquisa Operacional2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382021000100206Pesquisa Operacional v.41 2021reponame:Pesquisa operacional (Online)instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)instacron:SOBRAPO10.1590/0101-7438.2021.041.00241120info:eu-repo/semantics/openAccessCamara,Ana Julia A.Franco,Glaura C.Reisen,Valderio A.Bondon,Pascaleng2021-10-08T00:00:00Zoai:scielo:S0101-74382021000100206Revistahttp://www.scielo.br/popehttps://old.scielo.br/oai/scielo-oai.php||sobrapo@sobrapo.org.br1678-51420101-7438opendoar:2021-10-08T00:00Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)false
dc.title.none.fl_str_mv GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH
title GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH
spellingShingle GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH
Camara,Ana Julia A.
GAM
ARMA model
semiparametric model
Poisson-valued time series
title_short GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH
title_full GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH
title_fullStr GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH
title_full_unstemmed GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH
title_sort GENERALIZED ADDITIVE MODEL FOR COUNT TIME SERIES: AN APPLICATION TO QUANTIFY THE IMPACT OF AIR POLLUTANTS ON HUMAN HEALTH
author Camara,Ana Julia A.
author_facet Camara,Ana Julia A.
Franco,Glaura C.
Reisen,Valderio A.
Bondon,Pascal
author_role author
author2 Franco,Glaura C.
Reisen,Valderio A.
Bondon,Pascal
author2_role author
author
author
dc.contributor.author.fl_str_mv Camara,Ana Julia A.
Franco,Glaura C.
Reisen,Valderio A.
Bondon,Pascal
dc.subject.por.fl_str_mv GAM
ARMA model
semiparametric model
Poisson-valued time series
topic GAM
ARMA model
semiparametric model
Poisson-valued time series
description ABSTRACT The generalized additive model (GAM) has been used in many epidemiological studies where frequently the response variable is a nonnegative integer-valued time series. However, GAM assume that the observations are independent, which is generally not the case in time series. In this paper, an autoregressive moving average (ARMA) component is incorporated to the GAM. The resulting GAM-ARMA model is based on the generalized linear autoregressive moving average (GLARMA) model where some linear components are replaced by natural splines. Numerical simulations are presented and show that the ARMA component influences the estimation. In a real data analysis of the effects of air pollution on respiratory disease in the metropolitan area of Belo Horizonte, Brazil, it is shown that the proposed model presents a better fit when compared to the classical GAM approach, that does not take into account the autocorrelation of the data.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382021000100206
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382021000100206
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0101-7438.2021.041.00241120
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
publisher.none.fl_str_mv Sociedade Brasileira de Pesquisa Operacional
dc.source.none.fl_str_mv Pesquisa Operacional v.41 2021
reponame:Pesquisa operacional (Online)
instname:Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron:SOBRAPO
instname_str Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
instacron_str SOBRAPO
institution SOBRAPO
reponame_str Pesquisa operacional (Online)
collection Pesquisa operacional (Online)
repository.name.fl_str_mv Pesquisa operacional (Online) - Sociedade Brasileira de Pesquisa Operacional (SOBRAPO)
repository.mail.fl_str_mv ||sobrapo@sobrapo.org.br
_version_ 1750318018467987456