Nanofibrous Scaffolds for Tissue Engineering Applications

Detalhes bibliográficos
Autor(a) principal: Jaiswal,Amit
Data de Publicação: 2016
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Archives of Biology and Technology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132016000100602
Resumo: The discipline of tissue engineering opens up the ways for repair and regenerate damaged organs and tissues. In the current work biomimetic nanofibrous scaffolds were fabricated by electrospinning. Poly-L-lactic acid (PLLA) was blended with collagen and gelatin to fabricate PLLLA-collagen and PLLA-gelatin fibrous scaffolds respectively. Pure PLLA and gelatin scaffolds served as controls. All the scaffolds displayed randomly oriented smooth fibers studied by SEM. Surface topography and roughness were studied by AFM and surface contact angle was also measured for all the fabricated scaffolds. Surface roughness was found to be higher in collagen and gelatin blended scaffolds in comparison to PLLA scaffold. Blending of collagen and gelatin reduced the surface hydrophobicity of the scaffolds. Human osteosarcoma cell lines MG-63 were cultured on all scaffolds up to 7 days and cell adhesion was studied through SEM and confocal microscopy. SEM and confocal results showed that gelatin blended PLLA scaffold showed better cell attachment and cell spreading.
id TECPAR-1_46b43e6cba3106788422ecdf1de5312a
oai_identifier_str oai:scielo:S1516-89132016000100602
network_acronym_str TECPAR-1
network_name_str Brazilian Archives of Biology and Technology
repository_id_str
spelling Nanofibrous Scaffolds for Tissue Engineering ApplicationsElectrospinningBiomimeticTissue EngineeringThe discipline of tissue engineering opens up the ways for repair and regenerate damaged organs and tissues. In the current work biomimetic nanofibrous scaffolds were fabricated by electrospinning. Poly-L-lactic acid (PLLA) was blended with collagen and gelatin to fabricate PLLLA-collagen and PLLA-gelatin fibrous scaffolds respectively. Pure PLLA and gelatin scaffolds served as controls. All the scaffolds displayed randomly oriented smooth fibers studied by SEM. Surface topography and roughness were studied by AFM and surface contact angle was also measured for all the fabricated scaffolds. Surface roughness was found to be higher in collagen and gelatin blended scaffolds in comparison to PLLA scaffold. Blending of collagen and gelatin reduced the surface hydrophobicity of the scaffolds. Human osteosarcoma cell lines MG-63 were cultured on all scaffolds up to 7 days and cell adhesion was studied through SEM and confocal microscopy. SEM and confocal results showed that gelatin blended PLLA scaffold showed better cell attachment and cell spreading.Instituto de Tecnologia do Paraná - Tecpar2016-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132016000100602Brazilian Archives of Biology and Technology v.59 2016reponame:Brazilian Archives of Biology and Technologyinstname:Instituto de Tecnologia do Paraná (Tecpar)instacron:TECPAR10.1590/1678-4324-2016150644info:eu-repo/semantics/openAccessJaiswal,Amiteng2016-07-01T00:00:00Zoai:scielo:S1516-89132016000100602Revistahttps://www.scielo.br/j/babt/https://old.scielo.br/oai/scielo-oai.phpbabt@tecpar.br||babt@tecpar.br1678-43241516-8913opendoar:2016-07-01T00:00Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar)false
dc.title.none.fl_str_mv Nanofibrous Scaffolds for Tissue Engineering Applications
title Nanofibrous Scaffolds for Tissue Engineering Applications
spellingShingle Nanofibrous Scaffolds for Tissue Engineering Applications
Jaiswal,Amit
Electrospinning
Biomimetic
Tissue Engineering
title_short Nanofibrous Scaffolds for Tissue Engineering Applications
title_full Nanofibrous Scaffolds for Tissue Engineering Applications
title_fullStr Nanofibrous Scaffolds for Tissue Engineering Applications
title_full_unstemmed Nanofibrous Scaffolds for Tissue Engineering Applications
title_sort Nanofibrous Scaffolds for Tissue Engineering Applications
author Jaiswal,Amit
author_facet Jaiswal,Amit
author_role author
dc.contributor.author.fl_str_mv Jaiswal,Amit
dc.subject.por.fl_str_mv Electrospinning
Biomimetic
Tissue Engineering
topic Electrospinning
Biomimetic
Tissue Engineering
description The discipline of tissue engineering opens up the ways for repair and regenerate damaged organs and tissues. In the current work biomimetic nanofibrous scaffolds were fabricated by electrospinning. Poly-L-lactic acid (PLLA) was blended with collagen and gelatin to fabricate PLLLA-collagen and PLLA-gelatin fibrous scaffolds respectively. Pure PLLA and gelatin scaffolds served as controls. All the scaffolds displayed randomly oriented smooth fibers studied by SEM. Surface topography and roughness were studied by AFM and surface contact angle was also measured for all the fabricated scaffolds. Surface roughness was found to be higher in collagen and gelatin blended scaffolds in comparison to PLLA scaffold. Blending of collagen and gelatin reduced the surface hydrophobicity of the scaffolds. Human osteosarcoma cell lines MG-63 were cultured on all scaffolds up to 7 days and cell adhesion was studied through SEM and confocal microscopy. SEM and confocal results showed that gelatin blended PLLA scaffold showed better cell attachment and cell spreading.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132016000100602
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132016000100602
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-4324-2016150644
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto de Tecnologia do Paraná - Tecpar
publisher.none.fl_str_mv Instituto de Tecnologia do Paraná - Tecpar
dc.source.none.fl_str_mv Brazilian Archives of Biology and Technology v.59 2016
reponame:Brazilian Archives of Biology and Technology
instname:Instituto de Tecnologia do Paraná (Tecpar)
instacron:TECPAR
instname_str Instituto de Tecnologia do Paraná (Tecpar)
instacron_str TECPAR
institution TECPAR
reponame_str Brazilian Archives of Biology and Technology
collection Brazilian Archives of Biology and Technology
repository.name.fl_str_mv Brazilian Archives of Biology and Technology - Instituto de Tecnologia do Paraná (Tecpar)
repository.mail.fl_str_mv babt@tecpar.br||babt@tecpar.br
_version_ 1750318277731549184