Patterns and work with recursive sequences: an approach to the development of algerian thought

Detalhes bibliográficos
Autor(a) principal: Theodorovski, Ronaldo
Data de Publicação: 2020
Outros Autores: Oliveira, Fabiane
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Ensino de Ciências e Matemática - REnCiMa
Texto Completo: https://revistapos.cruzeirodosul.edu.br/rencima/article/view/2202
Resumo: This paper aims to present educational proposals for the teaching of algebra in order to promote the development of students' algebraic thinking. To do so a bibliographical survey searching for papers that demonstrate that such goal can be achieved through an education that prioritizes the recognition and the generalization of mathematical patterns was conducted. To address high school, we highlighted the sequences defined  recursively, which appear as a good starting point for the generalization of patterns. moreover, with the study of recurrences mathematics, it is possible to propose an alternative approach to teaching progressions. Seeking to work with numerical regularities to describe and generalize relations, we suggest the use of the questions of the Brazilian Olympiad of Mathematics of Public Schools (OBMEP), by solving problems, as a methodological proposal in the teaching of algebra
id UCS-4_530158259b1cb3c6835b10c594913339
oai_identifier_str oai:ojs.pkp.sfu.ca:article/2202
network_acronym_str UCS-4
network_name_str Revista de Ensino de Ciências e Matemática - REnCiMa
repository_id_str
spelling Patterns and work with recursive sequences: an approach to the development of algerian thoughtPadrões e o trabalho com sequências recursivas: uma abordagem no desenvolvimento do pensamento algébricopensamento algébricopadrõessequências recursivasOBMEPalgebraic thinkingpatternsrecursive sequencesOBMEPThis paper aims to present educational proposals for the teaching of algebra in order to promote the development of students' algebraic thinking. To do so a bibliographical survey searching for papers that demonstrate that such goal can be achieved through an education that prioritizes the recognition and the generalization of mathematical patterns was conducted. To address high school, we highlighted the sequences defined  recursively, which appear as a good starting point for the generalization of patterns. moreover, with the study of recurrences mathematics, it is possible to propose an alternative approach to teaching progressions. Seeking to work with numerical regularities to describe and generalize relations, we suggest the use of the questions of the Brazilian Olympiad of Mathematics of Public Schools (OBMEP), by solving problems, as a methodological proposal in the teaching of algebraEste trabalho tem por objetivo apresentar propostas pedagógicas para o ensino da álgebra tendo em vista promover o desenvolvimento do pensamento algébrico dos alunos. Para tanto foi realizado um levantamento bibliográfico buscando trabalhos que demonstram que tal objetivo pode ser alcançado por meio de um ensino que prioriza o reconhecimento e a generalização de padrões matemáticos. Para contemplar o Ensino Médio, demos destaque às sequências definidas recursivamente, que se revelam como um bom ponto de partida para a generalização de padrões. Além disso, com o estudo de recorrências matemática, é possível propor uma abordagem alternativa para o ensino de progressões. Buscando trabalhar com regularidades numéricas para descrever e generalizar relações, sugerimos a utilização das questões da Olimpíada Brasileira de Matemática das Escolas Públicas (OBMEP), como proposta metodológica no ensino da álgebra.   Editora Cruzeiro do Sul2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistapos.cruzeirodosul.edu.br/rencima/article/view/220210.26843/rencima.v11i1.2202Revista de Ensino de Ciências e Matemática; v. 11 n. 1 (2020): jan./mar.; 219-2362179-426X10.26843/rencima.v11i1reponame:Revista de Ensino de Ciências e Matemática - REnCiMainstname:Universidade de Caxias do Sul (UCS)instacron:UCSporhttps://revistapos.cruzeirodosul.edu.br/rencima/article/view/2202/1227https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BRinfo:eu-repo/semantics/openAccessTheodorovski, RonaldoOliveira, Fabiane2023-04-21T02:43:09Zoai:ojs.pkp.sfu.ca:article/2202Revistahttps://revistapos.cruzeirodosul.edu.br/index.php/rencima/indexPRIhttps://revistapos.cruzeirodosul.edu.br/index.php/rencima/oai||rencima@cruzeirodosul.edu.br2179-426X2179-426Xopendoar:2023-04-21T02:43:09Revista de Ensino de Ciências e Matemática - REnCiMa - Universidade de Caxias do Sul (UCS)false
dc.title.none.fl_str_mv Patterns and work with recursive sequences: an approach to the development of algerian thought
Padrões e o trabalho com sequências recursivas: uma abordagem no desenvolvimento do pensamento algébrico
title Patterns and work with recursive sequences: an approach to the development of algerian thought
spellingShingle Patterns and work with recursive sequences: an approach to the development of algerian thought
Theodorovski, Ronaldo
pensamento algébrico
padrões
sequências recursivas
OBMEP
algebraic thinking
patterns
recursive sequences
OBMEP
title_short Patterns and work with recursive sequences: an approach to the development of algerian thought
title_full Patterns and work with recursive sequences: an approach to the development of algerian thought
title_fullStr Patterns and work with recursive sequences: an approach to the development of algerian thought
title_full_unstemmed Patterns and work with recursive sequences: an approach to the development of algerian thought
title_sort Patterns and work with recursive sequences: an approach to the development of algerian thought
author Theodorovski, Ronaldo
author_facet Theodorovski, Ronaldo
Oliveira, Fabiane
author_role author
author2 Oliveira, Fabiane
author2_role author
dc.contributor.author.fl_str_mv Theodorovski, Ronaldo
Oliveira, Fabiane
dc.subject.por.fl_str_mv pensamento algébrico
padrões
sequências recursivas
OBMEP
algebraic thinking
patterns
recursive sequences
OBMEP
topic pensamento algébrico
padrões
sequências recursivas
OBMEP
algebraic thinking
patterns
recursive sequences
OBMEP
description This paper aims to present educational proposals for the teaching of algebra in order to promote the development of students' algebraic thinking. To do so a bibliographical survey searching for papers that demonstrate that such goal can be achieved through an education that prioritizes the recognition and the generalization of mathematical patterns was conducted. To address high school, we highlighted the sequences defined  recursively, which appear as a good starting point for the generalization of patterns. moreover, with the study of recurrences mathematics, it is possible to propose an alternative approach to teaching progressions. Seeking to work with numerical regularities to describe and generalize relations, we suggest the use of the questions of the Brazilian Olympiad of Mathematics of Public Schools (OBMEP), by solving problems, as a methodological proposal in the teaching of algebra
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistapos.cruzeirodosul.edu.br/rencima/article/view/2202
10.26843/rencima.v11i1.2202
url https://revistapos.cruzeirodosul.edu.br/rencima/article/view/2202
identifier_str_mv 10.26843/rencima.v11i1.2202
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistapos.cruzeirodosul.edu.br/rencima/article/view/2202/1227
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora Cruzeiro do Sul
publisher.none.fl_str_mv Editora Cruzeiro do Sul
dc.source.none.fl_str_mv Revista de Ensino de Ciências e Matemática; v. 11 n. 1 (2020): jan./mar.; 219-236
2179-426X
10.26843/rencima.v11i1
reponame:Revista de Ensino de Ciências e Matemática - REnCiMa
instname:Universidade de Caxias do Sul (UCS)
instacron:UCS
instname_str Universidade de Caxias do Sul (UCS)
instacron_str UCS
institution UCS
reponame_str Revista de Ensino de Ciências e Matemática - REnCiMa
collection Revista de Ensino de Ciências e Matemática - REnCiMa
repository.name.fl_str_mv Revista de Ensino de Ciências e Matemática - REnCiMa - Universidade de Caxias do Sul (UCS)
repository.mail.fl_str_mv ||rencima@cruzeirodosul.edu.br
_version_ 1799306131154141184