Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Semina. Ciências Agrárias (Online) |
Texto Completo: | https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793 |
Resumo: | The reduction in the quality, consumption, and digestibility of forage can cause a decrease in animal performance, resulting in losses to the rural producer. Thus, it is important to monitor these characteristics in forage plants to devise strategies or practices that optimize production systems. The aim of this study was to develop and validate prediction models using near-infrared spectroscopy (NIRS) to determine the chemical composition of Tifton 85 grass. Samples of green grass, its morphological structures (whole plant, leaf blade, stem + sheath, and senescent material) and hay, totaling 105 samples were used. Conventional chemical analysis was performed to determine the content of oven-dried samples (ODS), mineral matter (MM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL), hemicellulose (HEM), and in vitro dry matter digestibility (IVDMD). Subsequently, all the samples were scanned using a Vis-NIR spectrometer to collect spectral data. Principal component analysis (PCA) was applied to the data set, and modified partial least squares was used to correlate reference values to spectral data. The coefficients of determination (R2) were 0.74, 0.85, 0.98, 0.75, 0.85, 0.71, 0.82, 0.77, and 0.93, and the ratio of performance deviations (RPD) obtained were 1.99, 2.71, 6.46, 2.05, 2.58, 3.84, 1.86, 2.35, 2.09, and 3.84 for ODS, MM, CP, NDF, ADF, ADL, CEL, HEM, and IVDMD, respectively. The prediction models obtained, in general, were considered to be of excellent quality, and demonstrated that the determination of the chemical composition of Tifton 85 grass can be performed using NIRS technology, replacing conventional analysis. |
id |
UEL-11_b575b202610c55392b1547b30e41b630 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/40793 |
network_acronym_str |
UEL-11 |
network_name_str |
Semina. Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grassUso da espectroscopia de infravermelho próximo para a predição da composição química de capim Tifton 85Cynodon sppHay. Leaf bladeNIRSProtein.Cynodon spp.FenoLâmina foliarNIRSProteína.The reduction in the quality, consumption, and digestibility of forage can cause a decrease in animal performance, resulting in losses to the rural producer. Thus, it is important to monitor these characteristics in forage plants to devise strategies or practices that optimize production systems. The aim of this study was to develop and validate prediction models using near-infrared spectroscopy (NIRS) to determine the chemical composition of Tifton 85 grass. Samples of green grass, its morphological structures (whole plant, leaf blade, stem + sheath, and senescent material) and hay, totaling 105 samples were used. Conventional chemical analysis was performed to determine the content of oven-dried samples (ODS), mineral matter (MM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL), hemicellulose (HEM), and in vitro dry matter digestibility (IVDMD). Subsequently, all the samples were scanned using a Vis-NIR spectrometer to collect spectral data. Principal component analysis (PCA) was applied to the data set, and modified partial least squares was used to correlate reference values to spectral data. The coefficients of determination (R2) were 0.74, 0.85, 0.98, 0.75, 0.85, 0.71, 0.82, 0.77, and 0.93, and the ratio of performance deviations (RPD) obtained were 1.99, 2.71, 6.46, 2.05, 2.58, 3.84, 1.86, 2.35, 2.09, and 3.84 for ODS, MM, CP, NDF, ADF, ADL, CEL, HEM, and IVDMD, respectively. The prediction models obtained, in general, were considered to be of excellent quality, and demonstrated that the determination of the chemical composition of Tifton 85 grass can be performed using NIRS technology, replacing conventional analysis.A redução da qualidade, do consumo e da digestibilidade da forragem pode ocasionar a diminuição do desempenho animal, resultando em prejuízos ao produtor rural. Desta forma, é importante monitorar essas características em plantas forrageiras para definir estratégias ou práticas que otimizem os sistemas de produção. Objetivou-se desenvolver e validar modelos de predição pela espectroscopia de infravermelho próximo (NIRS), para determinar a composição química do capim Tifton 85 (Cynodon spp.). Foram utilizadas amostras de capim verde (planta inteira, lâmina foliar, colmo + bainha e material senescente) e de feno, da mesma gramínea, totalizando 105 amostras. As amostras foram submetidas a análise química convencional para determinação dos teores de amostra seca em estufa (ASE), matéria mineral (MM), proteína bruta (PB), fibra em detergente neutro (FDN), fibra em detergente ácido (FDA), lignina em detergente ácido (LDA), celulose (CEL), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). Posteriormente, todas as amostras foram escaneadas em espectrômetro Vis-NIR, para a coleta dos dados espectrais. Aplicou-se a análise de componentes principais (PCA) ao conjunto de amostras, e utilizou-se a regressão por mínimos quadrados parciais modificadas para correlacionar valores de referência aos dados espectrais. Os coeficientes de determinação (R2) foram de 0,74; 0,85; 0,98; 0,75; 0,85; 0,71; 0,82, 0,77 e 0,93 e as taxas de desvio de performance (RPD) de 1,99; 2,71; 6,46; 2,05; 2,58; 3,84; 1,86; 2,35; 2,09 e 3,84 para ASE, MM, PB, FDN, FDA, LDA, CEL, HEM e DIVMS respectivamente, na etapa de validação. Os modelos de predição obtidos, em geral, foram considerados de boa qualidade, e demonstraram que a determinação da composição química do Tifton 85 pode ser realizada pela tecnologia NIRS, em substituição à análise convencional.UEL2021-03-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPesquisa empírica de campoapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/4079310.5433/1679-0359.2021v42n3p1287Semina: Ciências Agrárias; Vol. 42 No. 3 (2021); 1287-1302Semina: Ciências Agrárias; v. 42 n. 3 (2021); 1287-13021679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793/29173Copyright (c) 2021 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessSerafim, Camila CanoGuerra, Geisi LouresMizubuti, Ivone YurikaCastro, Filipe Alexandre Boscaro dePrado-Calixto, Odimári PricilaGalbeiro, SandraParra, Angela Rocio PovedaBumbieris Junior, Valter HarryPértile, Simone Fernanda NedelRego, Fabíola Cristine de Almeida2022-10-04T13:05:47Zoai:ojs.pkp.sfu.ca:article/40793Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-04T13:05:47Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false |
dc.title.none.fl_str_mv |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass Uso da espectroscopia de infravermelho próximo para a predição da composição química de capim Tifton 85 |
title |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass |
spellingShingle |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass Serafim, Camila Cano Cynodon spp Hay. Leaf blade NIRS Protein. Cynodon spp. Feno Lâmina foliar NIRS Proteína. |
title_short |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass |
title_full |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass |
title_fullStr |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass |
title_full_unstemmed |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass |
title_sort |
Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass |
author |
Serafim, Camila Cano |
author_facet |
Serafim, Camila Cano Guerra, Geisi Loures Mizubuti, Ivone Yurika Castro, Filipe Alexandre Boscaro de Prado-Calixto, Odimári Pricila Galbeiro, Sandra Parra, Angela Rocio Poveda Bumbieris Junior, Valter Harry Pértile, Simone Fernanda Nedel Rego, Fabíola Cristine de Almeida |
author_role |
author |
author2 |
Guerra, Geisi Loures Mizubuti, Ivone Yurika Castro, Filipe Alexandre Boscaro de Prado-Calixto, Odimári Pricila Galbeiro, Sandra Parra, Angela Rocio Poveda Bumbieris Junior, Valter Harry Pértile, Simone Fernanda Nedel Rego, Fabíola Cristine de Almeida |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Serafim, Camila Cano Guerra, Geisi Loures Mizubuti, Ivone Yurika Castro, Filipe Alexandre Boscaro de Prado-Calixto, Odimári Pricila Galbeiro, Sandra Parra, Angela Rocio Poveda Bumbieris Junior, Valter Harry Pértile, Simone Fernanda Nedel Rego, Fabíola Cristine de Almeida |
dc.subject.por.fl_str_mv |
Cynodon spp Hay. Leaf blade NIRS Protein. Cynodon spp. Feno Lâmina foliar NIRS Proteína. |
topic |
Cynodon spp Hay. Leaf blade NIRS Protein. Cynodon spp. Feno Lâmina foliar NIRS Proteína. |
description |
The reduction in the quality, consumption, and digestibility of forage can cause a decrease in animal performance, resulting in losses to the rural producer. Thus, it is important to monitor these characteristics in forage plants to devise strategies or practices that optimize production systems. The aim of this study was to develop and validate prediction models using near-infrared spectroscopy (NIRS) to determine the chemical composition of Tifton 85 grass. Samples of green grass, its morphological structures (whole plant, leaf blade, stem + sheath, and senescent material) and hay, totaling 105 samples were used. Conventional chemical analysis was performed to determine the content of oven-dried samples (ODS), mineral matter (MM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL), hemicellulose (HEM), and in vitro dry matter digestibility (IVDMD). Subsequently, all the samples were scanned using a Vis-NIR spectrometer to collect spectral data. Principal component analysis (PCA) was applied to the data set, and modified partial least squares was used to correlate reference values to spectral data. The coefficients of determination (R2) were 0.74, 0.85, 0.98, 0.75, 0.85, 0.71, 0.82, 0.77, and 0.93, and the ratio of performance deviations (RPD) obtained were 1.99, 2.71, 6.46, 2.05, 2.58, 3.84, 1.86, 2.35, 2.09, and 3.84 for ODS, MM, CP, NDF, ADF, ADL, CEL, HEM, and IVDMD, respectively. The prediction models obtained, in general, were considered to be of excellent quality, and demonstrated that the determination of the chemical composition of Tifton 85 grass can be performed using NIRS technology, replacing conventional analysis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-19 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Pesquisa empírica de campo |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793 10.5433/1679-0359.2021v42n3p1287 |
url |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793 |
identifier_str_mv |
10.5433/1679-0359.2021v42n3p1287 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793/29173 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Semina: Ciências Agrárias http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UEL |
publisher.none.fl_str_mv |
UEL |
dc.source.none.fl_str_mv |
Semina: Ciências Agrárias; Vol. 42 No. 3 (2021); 1287-1302 Semina: Ciências Agrárias; v. 42 n. 3 (2021); 1287-1302 1679-0359 1676-546X reponame:Semina. Ciências Agrárias (Online) instname:Universidade Estadual de Londrina (UEL) instacron:UEL |
instname_str |
Universidade Estadual de Londrina (UEL) |
instacron_str |
UEL |
institution |
UEL |
reponame_str |
Semina. Ciências Agrárias (Online) |
collection |
Semina. Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL) |
repository.mail.fl_str_mv |
semina.agrarias@uel.br |
_version_ |
1799306083443933184 |