Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass

Detalhes bibliográficos
Autor(a) principal: Serafim, Camila Cano
Data de Publicação: 2021
Outros Autores: Guerra, Geisi Loures, Mizubuti, Ivone Yurika, Castro, Filipe Alexandre Boscaro de, Prado-Calixto, Odimári Pricila, Galbeiro, Sandra, Parra, Angela Rocio Poveda, Bumbieris Junior, Valter Harry, Pértile, Simone Fernanda Nedel, Rego, Fabíola Cristine de Almeida
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Semina. Ciências Agrárias (Online)
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793
Resumo: The reduction in the quality, consumption, and digestibility of forage can cause a decrease in animal performance, resulting in losses to the rural producer. Thus, it is important to monitor these characteristics in forage plants to devise strategies or practices that optimize production systems. The aim of this study was to develop and validate prediction models using near-infrared spectroscopy (NIRS) to determine the chemical composition of Tifton 85 grass. Samples of green grass, its morphological structures (whole plant, leaf blade, stem + sheath, and senescent material) and hay, totaling 105 samples were used. Conventional chemical analysis was performed to determine the content of oven-dried samples (ODS), mineral matter (MM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL), hemicellulose (HEM), and in vitro dry matter digestibility (IVDMD). Subsequently, all the samples were scanned using a Vis-NIR spectrometer to collect spectral data. Principal component analysis (PCA) was applied to the data set, and modified partial least squares was used to correlate reference values to spectral data. The coefficients of determination (R2) were 0.74, 0.85, 0.98, 0.75, 0.85, 0.71, 0.82, 0.77, and 0.93, and the ratio of performance deviations (RPD) obtained were 1.99, 2.71, 6.46, 2.05, 2.58, 3.84, 1.86, 2.35, 2.09, and 3.84 for ODS, MM, CP, NDF, ADF, ADL, CEL, HEM, and IVDMD, respectively. The prediction models obtained, in general, were considered to be of excellent quality, and demonstrated that the determination of the chemical composition of Tifton 85 grass can be performed using NIRS technology, replacing conventional analysis.
id UEL-11_b575b202610c55392b1547b30e41b630
oai_identifier_str oai:ojs.pkp.sfu.ca:article/40793
network_acronym_str UEL-11
network_name_str Semina. Ciências Agrárias (Online)
repository_id_str
spelling Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grassUso da espectroscopia de infravermelho próximo para a predição da composição química de capim Tifton 85Cynodon sppHay. Leaf bladeNIRSProtein.Cynodon spp.FenoLâmina foliarNIRSProteína.The reduction in the quality, consumption, and digestibility of forage can cause a decrease in animal performance, resulting in losses to the rural producer. Thus, it is important to monitor these characteristics in forage plants to devise strategies or practices that optimize production systems. The aim of this study was to develop and validate prediction models using near-infrared spectroscopy (NIRS) to determine the chemical composition of Tifton 85 grass. Samples of green grass, its morphological structures (whole plant, leaf blade, stem + sheath, and senescent material) and hay, totaling 105 samples were used. Conventional chemical analysis was performed to determine the content of oven-dried samples (ODS), mineral matter (MM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL), hemicellulose (HEM), and in vitro dry matter digestibility (IVDMD). Subsequently, all the samples were scanned using a Vis-NIR spectrometer to collect spectral data. Principal component analysis (PCA) was applied to the data set, and modified partial least squares was used to correlate reference values to spectral data. The coefficients of determination (R2) were 0.74, 0.85, 0.98, 0.75, 0.85, 0.71, 0.82, 0.77, and 0.93, and the ratio of performance deviations (RPD) obtained were 1.99, 2.71, 6.46, 2.05, 2.58, 3.84, 1.86, 2.35, 2.09, and 3.84 for ODS, MM, CP, NDF, ADF, ADL, CEL, HEM, and IVDMD, respectively. The prediction models obtained, in general, were considered to be of excellent quality, and demonstrated that the determination of the chemical composition of Tifton 85 grass can be performed using NIRS technology, replacing conventional analysis.A redução da qualidade, do consumo e da digestibilidade da forragem pode ocasionar a diminuição do desempenho animal, resultando em prejuízos ao produtor rural. Desta forma, é importante monitorar essas características em plantas forrageiras para definir estratégias ou práticas que otimizem os sistemas de produção. Objetivou-se desenvolver e validar modelos de predição pela espectroscopia de infravermelho próximo (NIRS), para determinar a composição química do capim Tifton 85 (Cynodon spp.). Foram utilizadas amostras de capim verde (planta inteira, lâmina foliar, colmo + bainha e material senescente) e de feno, da mesma gramínea, totalizando 105 amostras. As amostras foram submetidas a análise química convencional para determinação dos teores de amostra seca em estufa (ASE), matéria mineral (MM), proteína bruta (PB), fibra em detergente neutro (FDN), fibra em detergente ácido (FDA), lignina em detergente ácido (LDA), celulose (CEL), hemicelulose (HEM) e digestibilidade in vitro da matéria seca (DIVMS). Posteriormente, todas as amostras foram escaneadas em espectrômetro Vis-NIR, para a coleta dos dados espectrais. Aplicou-se a análise de componentes principais (PCA) ao conjunto de amostras, e utilizou-se a regressão por mínimos quadrados parciais modificadas para correlacionar valores de referência aos dados espectrais. Os coeficientes de determinação (R2) foram de 0,74; 0,85; 0,98; 0,75; 0,85; 0,71; 0,82, 0,77 e 0,93 e as taxas de desvio de performance (RPD) de 1,99; 2,71; 6,46; 2,05; 2,58; 3,84; 1,86; 2,35; 2,09 e 3,84 para ASE, MM, PB, FDN, FDA, LDA, CEL, HEM e DIVMS respectivamente, na etapa de validação. Os modelos de predição obtidos, em geral, foram considerados de boa qualidade, e demonstraram que a determinação da composição química do Tifton 85 pode ser realizada pela tecnologia NIRS, em substituição à análise convencional.UEL2021-03-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPesquisa empírica de campoapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/4079310.5433/1679-0359.2021v42n3p1287Semina: Ciências Agrárias; Vol. 42 No. 3 (2021); 1287-1302Semina: Ciências Agrárias; v. 42 n. 3 (2021); 1287-13021679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793/29173Copyright (c) 2021 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessSerafim, Camila CanoGuerra, Geisi LouresMizubuti, Ivone YurikaCastro, Filipe Alexandre Boscaro dePrado-Calixto, Odimári PricilaGalbeiro, SandraParra, Angela Rocio PovedaBumbieris Junior, Valter HarryPértile, Simone Fernanda NedelRego, Fabíola Cristine de Almeida2022-10-04T13:05:47Zoai:ojs.pkp.sfu.ca:article/40793Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-04T13:05:47Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
Uso da espectroscopia de infravermelho próximo para a predição da composição química de capim Tifton 85
title Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
spellingShingle Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
Serafim, Camila Cano
Cynodon spp
Hay. Leaf blade
NIRS
Protein.
Cynodon spp.
Feno
Lâmina foliar
NIRS
Proteína.
title_short Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
title_full Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
title_fullStr Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
title_full_unstemmed Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
title_sort Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
author Serafim, Camila Cano
author_facet Serafim, Camila Cano
Guerra, Geisi Loures
Mizubuti, Ivone Yurika
Castro, Filipe Alexandre Boscaro de
Prado-Calixto, Odimári Pricila
Galbeiro, Sandra
Parra, Angela Rocio Poveda
Bumbieris Junior, Valter Harry
Pértile, Simone Fernanda Nedel
Rego, Fabíola Cristine de Almeida
author_role author
author2 Guerra, Geisi Loures
Mizubuti, Ivone Yurika
Castro, Filipe Alexandre Boscaro de
Prado-Calixto, Odimári Pricila
Galbeiro, Sandra
Parra, Angela Rocio Poveda
Bumbieris Junior, Valter Harry
Pértile, Simone Fernanda Nedel
Rego, Fabíola Cristine de Almeida
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Serafim, Camila Cano
Guerra, Geisi Loures
Mizubuti, Ivone Yurika
Castro, Filipe Alexandre Boscaro de
Prado-Calixto, Odimári Pricila
Galbeiro, Sandra
Parra, Angela Rocio Poveda
Bumbieris Junior, Valter Harry
Pértile, Simone Fernanda Nedel
Rego, Fabíola Cristine de Almeida
dc.subject.por.fl_str_mv Cynodon spp
Hay. Leaf blade
NIRS
Protein.
Cynodon spp.
Feno
Lâmina foliar
NIRS
Proteína.
topic Cynodon spp
Hay. Leaf blade
NIRS
Protein.
Cynodon spp.
Feno
Lâmina foliar
NIRS
Proteína.
description The reduction in the quality, consumption, and digestibility of forage can cause a decrease in animal performance, resulting in losses to the rural producer. Thus, it is important to monitor these characteristics in forage plants to devise strategies or practices that optimize production systems. The aim of this study was to develop and validate prediction models using near-infrared spectroscopy (NIRS) to determine the chemical composition of Tifton 85 grass. Samples of green grass, its morphological structures (whole plant, leaf blade, stem + sheath, and senescent material) and hay, totaling 105 samples were used. Conventional chemical analysis was performed to determine the content of oven-dried samples (ODS), mineral matter (MM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL), hemicellulose (HEM), and in vitro dry matter digestibility (IVDMD). Subsequently, all the samples were scanned using a Vis-NIR spectrometer to collect spectral data. Principal component analysis (PCA) was applied to the data set, and modified partial least squares was used to correlate reference values to spectral data. The coefficients of determination (R2) were 0.74, 0.85, 0.98, 0.75, 0.85, 0.71, 0.82, 0.77, and 0.93, and the ratio of performance deviations (RPD) obtained were 1.99, 2.71, 6.46, 2.05, 2.58, 3.84, 1.86, 2.35, 2.09, and 3.84 for ODS, MM, CP, NDF, ADF, ADL, CEL, HEM, and IVDMD, respectively. The prediction models obtained, in general, were considered to be of excellent quality, and demonstrated that the determination of the chemical composition of Tifton 85 grass can be performed using NIRS technology, replacing conventional analysis.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-19
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Pesquisa empírica de campo
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793
10.5433/1679-0359.2021v42n3p1287
url https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793
identifier_str_mv 10.5433/1679-0359.2021v42n3p1287
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/40793/29173
dc.rights.driver.fl_str_mv Copyright (c) 2021 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UEL
publisher.none.fl_str_mv UEL
dc.source.none.fl_str_mv Semina: Ciências Agrárias; Vol. 42 No. 3 (2021); 1287-1302
Semina: Ciências Agrárias; v. 42 n. 3 (2021); 1287-1302
1679-0359
1676-546X
reponame:Semina. Ciências Agrárias (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Semina. Ciências Agrárias (Online)
collection Semina. Ciências Agrárias (Online)
repository.name.fl_str_mv Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv semina.agrarias@uel.br
_version_ 1799306083443933184