Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25794 |
Resumo: | The influence of variables that affect the process of alcohol fermentation for the optimization of ethanol production is evaluated, with fermentation time, final substrate concentration, cells and ethanol as performance indexes. A statistical planning for process optimization was employed by analyzing three independent variables: temperature, pH and Brix and the influence they have on dependent variables. Brix and pH had a significant effect on fermentation time with a 77% rate by analysis of variance. In the case of concentration of substrate and product, only Brix had a significant effect, with regression above 75 and 87%, respectively. Since the two models are valid at 95% confidence interval since Fcalculated is greater than Ftabulated, they may be employed to estimate fermentation time and the concentration of substrate and ethanol. |
id |
UEM-6_144e8837e97347e98e8eaca2701b8ad1 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/25794 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiaebiofuelethanolfermentation processes.Processos BioquimicosThe influence of variables that affect the process of alcohol fermentation for the optimization of ethanol production is evaluated, with fermentation time, final substrate concentration, cells and ethanol as performance indexes. A statistical planning for process optimization was employed by analyzing three independent variables: temperature, pH and Brix and the influence they have on dependent variables. Brix and pH had a significant effect on fermentation time with a 77% rate by analysis of variance. In the case of concentration of substrate and product, only Brix had a significant effect, with regression above 75 and 87%, respectively. Since the two models are valid at 95% confidence interval since Fcalculated is greater than Ftabulated, they may be employed to estimate fermentation time and the concentration of substrate and ethanol. Universidade Estadual De Maringá2015-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2579410.4025/actascitechnol.v37i3.25794Acta Scientiarum. Technology; Vol 37 No 3 (2015); 313-320Acta Scientiarum. Technology; v. 37 n. 3 (2015); 313-3201806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25794/pdf_94Bonassa, GabrielaSchneider, Lara TalitaCremonez, Paulo AndréOliveira, Carlos de Jesus deTeleken, Joel GustavoFrigo, Elisandro Piresinfo:eu-repo/semantics/openAccess2015-09-11T09:21:41Zoai:periodicos.uem.br/ojs:article/25794Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2015-09-11T09:21:41Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae |
title |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae |
spellingShingle |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae Bonassa, Gabriela biofuel ethanol fermentation processes. Processos Bioquimicos |
title_short |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae |
title_full |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae |
title_fullStr |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae |
title_full_unstemmed |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae |
title_sort |
Optimization of first generation alcoholic fermentation process with Saccharomyces cerevisiae |
author |
Bonassa, Gabriela |
author_facet |
Bonassa, Gabriela Schneider, Lara Talita Cremonez, Paulo André Oliveira, Carlos de Jesus de Teleken, Joel Gustavo Frigo, Elisandro Pires |
author_role |
author |
author2 |
Schneider, Lara Talita Cremonez, Paulo André Oliveira, Carlos de Jesus de Teleken, Joel Gustavo Frigo, Elisandro Pires |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Bonassa, Gabriela Schneider, Lara Talita Cremonez, Paulo André Oliveira, Carlos de Jesus de Teleken, Joel Gustavo Frigo, Elisandro Pires |
dc.subject.por.fl_str_mv |
biofuel ethanol fermentation processes. Processos Bioquimicos |
topic |
biofuel ethanol fermentation processes. Processos Bioquimicos |
description |
The influence of variables that affect the process of alcohol fermentation for the optimization of ethanol production is evaluated, with fermentation time, final substrate concentration, cells and ethanol as performance indexes. A statistical planning for process optimization was employed by analyzing three independent variables: temperature, pH and Brix and the influence they have on dependent variables. Brix and pH had a significant effect on fermentation time with a 77% rate by analysis of variance. In the case of concentration of substrate and product, only Brix had a significant effect, with regression above 75 and 87%, respectively. Since the two models are valid at 95% confidence interval since Fcalculated is greater than Ftabulated, they may be employed to estimate fermentation time and the concentration of substrate and ethanol. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25794 10.4025/actascitechnol.v37i3.25794 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25794 |
identifier_str_mv |
10.4025/actascitechnol.v37i3.25794 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/25794/pdf_94 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 37 No 3 (2015); 313-320 Acta Scientiarum. Technology; v. 37 n. 3 (2015); 313-320 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315335477723136 |