Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507 |
Resumo: | In this paper, the ability of the multilayer perceptron neural network (MLP) in interpolation was used to analyze two classes of boundary value problems. The first class is formed by differential equations, with solutions which can have high gradients and the second are partial differential equations, defined on arbitrary shaped domain. Also, the methodologies proposed by Lagaris et al. (1998) were enlarged for differential equations subjected to Cauchy and mix boundary conditions type. The results of the artificial neural network method are very precise when comparison to the analytical ones or those of classical numerical methods to solve differential equations. The precision achieved in the results and the ability to handle the method, to solve those boundary value problems, were encouraging to keep the research, particularly on an important direction, concerning convergence and numerical stability |
id |
UEM-6_fd676e211ddb1120a67ddb4c7561ccfb |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/1507 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507Resolução de equações diferenciais por redes neurais artificiais: problemas com gradientes elevados e domínios arbitrários - DOI: 10.4025/actascitechnol.v27i1.1507redes neuraisequações diferenciaisgradientes elevados3.06.00.00-6 Engenharia QuímicaIn this paper, the ability of the multilayer perceptron neural network (MLP) in interpolation was used to analyze two classes of boundary value problems. The first class is formed by differential equations, with solutions which can have high gradients and the second are partial differential equations, defined on arbitrary shaped domain. Also, the methodologies proposed by Lagaris et al. (1998) were enlarged for differential equations subjected to Cauchy and mix boundary conditions type. The results of the artificial neural network method are very precise when comparison to the analytical ones or those of classical numerical methods to solve differential equations. The precision achieved in the results and the ability to handle the method, to solve those boundary value problems, were encouraging to keep the research, particularly on an important direction, concerning convergence and numerical stabilityNeste artigo a habilidade das redes neurais perceptron multicamada em interpolar foi utilizada para analisar duas classes de problemas de contorno. A primeira classe é formada por equações diferenciais em que a solução pode apresentar gradientes elevados e a segunda classe é formada de equações diferenciais definidas em domínios arbitrários. As metodologias propostas por Lagaris et al. (1998) foram estendidas para casos de equações diferenciais sujeitas às condições de Cauchy e condições de contorno mistas. Os resultados fornecidos pelo método da rede neural se apresentam precisos quando comparados com os resultados analíticos ou por métodos numéricos de resolução de equações diferenciais. A precisão alcançada nos resultados e a facilidade no manuseio do método para resolver estes problemas de contorno encorajaram a continuidade da pesquisa, particularmente no tocante à convergência e estabilidade numéricaUniversidade Estadual De Maringá2008-03-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/150710.4025/actascitechnol.v27i1.1507Acta Scientiarum. Technology; Vol 27 No 1 (2005); 7-16Acta Scientiarum. Technology; v. 27 n. 1 (2005); 7-161806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507/851Silva, Luiz Henry Monken eNeitzel, IvoLima, Ed Pinheiroinfo:eu-repo/semantics/openAccess2024-05-17T13:02:38Zoai:periodicos.uem.br/ojs:article/1507Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:02:38Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507 Resolução de equações diferenciais por redes neurais artificiais: problemas com gradientes elevados e domínios arbitrários - DOI: 10.4025/actascitechnol.v27i1.1507 |
title |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507 |
spellingShingle |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507 Silva, Luiz Henry Monken e redes neurais equações diferenciais gradientes elevados 3.06.00.00-6 Engenharia Química |
title_short |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507 |
title_full |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507 |
title_fullStr |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507 |
title_full_unstemmed |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507 |
title_sort |
Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507 |
author |
Silva, Luiz Henry Monken e |
author_facet |
Silva, Luiz Henry Monken e Neitzel, Ivo Lima, Ed Pinheiro |
author_role |
author |
author2 |
Neitzel, Ivo Lima, Ed Pinheiro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, Luiz Henry Monken e Neitzel, Ivo Lima, Ed Pinheiro |
dc.subject.por.fl_str_mv |
redes neurais equações diferenciais gradientes elevados 3.06.00.00-6 Engenharia Química |
topic |
redes neurais equações diferenciais gradientes elevados 3.06.00.00-6 Engenharia Química |
description |
In this paper, the ability of the multilayer perceptron neural network (MLP) in interpolation was used to analyze two classes of boundary value problems. The first class is formed by differential equations, with solutions which can have high gradients and the second are partial differential equations, defined on arbitrary shaped domain. Also, the methodologies proposed by Lagaris et al. (1998) were enlarged for differential equations subjected to Cauchy and mix boundary conditions type. The results of the artificial neural network method are very precise when comparison to the analytical ones or those of classical numerical methods to solve differential equations. The precision achieved in the results and the ability to handle the method, to solve those boundary value problems, were encouraging to keep the research, particularly on an important direction, concerning convergence and numerical stability |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-03-27 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507 10.4025/actascitechnol.v27i1.1507 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507 |
identifier_str_mv |
10.4025/actascitechnol.v27i1.1507 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507/851 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 27 No 1 (2005); 7-16 Acta Scientiarum. Technology; v. 27 n. 1 (2005); 7-16 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315331964993536 |