Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507

Detalhes bibliográficos
Autor(a) principal: Silva, Luiz Henry Monken e
Data de Publicação: 2008
Outros Autores: Neitzel, Ivo, Lima, Ed Pinheiro
Tipo de documento: Artigo
Idioma: por
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507
Resumo: In this paper, the ability of the multilayer perceptron neural network (MLP) in interpolation was used to analyze two classes of boundary value problems. The first class is formed by differential equations, with solutions which can have high gradients and the second are partial differential equations, defined on arbitrary shaped domain. Also, the methodologies proposed by Lagaris et al. (1998) were enlarged for differential equations subjected to Cauchy and mix boundary conditions type. The results of the artificial neural network method are very precise when comparison to the analytical ones or those of classical numerical methods to solve differential equations. The precision achieved in the results and the ability to handle the method, to solve those boundary value problems, were encouraging to keep the research, particularly on an important direction, concerning convergence and numerical stability
id UEM-6_fd676e211ddb1120a67ddb4c7561ccfb
oai_identifier_str oai:periodicos.uem.br/ojs:article/1507
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507Resolução de equações diferenciais por redes neurais artificiais: problemas com gradientes elevados e domínios arbitrários - DOI: 10.4025/actascitechnol.v27i1.1507redes neuraisequações diferenciaisgradientes elevados3.06.00.00-6 Engenharia QuímicaIn this paper, the ability of the multilayer perceptron neural network (MLP) in interpolation was used to analyze two classes of boundary value problems. The first class is formed by differential equations, with solutions which can have high gradients and the second are partial differential equations, defined on arbitrary shaped domain. Also, the methodologies proposed by Lagaris et al. (1998) were enlarged for differential equations subjected to Cauchy and mix boundary conditions type. The results of the artificial neural network method are very precise when comparison to the analytical ones or those of classical numerical methods to solve differential equations. The precision achieved in the results and the ability to handle the method, to solve those boundary value problems, were encouraging to keep the research, particularly on an important direction, concerning convergence and numerical stabilityNeste artigo a habilidade das redes neurais perceptron multicamada em interpolar foi utilizada para analisar duas classes de problemas de contorno. A primeira classe é formada por equações diferenciais em que a solução pode apresentar gradientes elevados e a segunda classe é formada de equações diferenciais definidas em domínios arbitrários. As metodologias propostas por Lagaris et al. (1998) foram estendidas para casos de equações diferenciais sujeitas às condições de Cauchy e condições de contorno mistas. Os resultados fornecidos pelo método da rede neural se apresentam precisos quando comparados com os resultados analíticos ou por métodos numéricos de resolução de equações diferenciais. A precisão alcançada nos resultados e a facilidade no manuseio do método para resolver estes problemas de contorno encorajaram a continuidade da pesquisa, particularmente no tocante à convergência e estabilidade numéricaUniversidade Estadual De Maringá2008-03-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/150710.4025/actascitechnol.v27i1.1507Acta Scientiarum. Technology; Vol 27 No 1 (2005); 7-16Acta Scientiarum. Technology; v. 27 n. 1 (2005); 7-161806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507/851Silva, Luiz Henry Monken eNeitzel, IvoLima, Ed Pinheiroinfo:eu-repo/semantics/openAccess2024-05-17T13:02:38Zoai:periodicos.uem.br/ojs:article/1507Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:02:38Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
Resolução de equações diferenciais por redes neurais artificiais: problemas com gradientes elevados e domínios arbitrários - DOI: 10.4025/actascitechnol.v27i1.1507
title Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
spellingShingle Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
Silva, Luiz Henry Monken e
redes neurais
equações diferenciais
gradientes elevados
3.06.00.00-6 Engenharia Química
title_short Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
title_full Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
title_fullStr Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
title_full_unstemmed Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
title_sort Resolution of differential equations with artificial neural networks: high gradients and arbitrary domains problems - DOI: 10.4025/actascitechnol.v27i1.1507
author Silva, Luiz Henry Monken e
author_facet Silva, Luiz Henry Monken e
Neitzel, Ivo
Lima, Ed Pinheiro
author_role author
author2 Neitzel, Ivo
Lima, Ed Pinheiro
author2_role author
author
dc.contributor.author.fl_str_mv Silva, Luiz Henry Monken e
Neitzel, Ivo
Lima, Ed Pinheiro
dc.subject.por.fl_str_mv redes neurais
equações diferenciais
gradientes elevados
3.06.00.00-6 Engenharia Química
topic redes neurais
equações diferenciais
gradientes elevados
3.06.00.00-6 Engenharia Química
description In this paper, the ability of the multilayer perceptron neural network (MLP) in interpolation was used to analyze two classes of boundary value problems. The first class is formed by differential equations, with solutions which can have high gradients and the second are partial differential equations, defined on arbitrary shaped domain. Also, the methodologies proposed by Lagaris et al. (1998) were enlarged for differential equations subjected to Cauchy and mix boundary conditions type. The results of the artificial neural network method are very precise when comparison to the analytical ones or those of classical numerical methods to solve differential equations. The precision achieved in the results and the ability to handle the method, to solve those boundary value problems, were encouraging to keep the research, particularly on an important direction, concerning convergence and numerical stability
publishDate 2008
dc.date.none.fl_str_mv 2008-03-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507
10.4025/actascitechnol.v27i1.1507
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507
identifier_str_mv 10.4025/actascitechnol.v27i1.1507
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1507/851
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 27 No 1 (2005); 7-16
Acta Scientiarum. Technology; v. 27 n. 1 (2005); 7-16
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315331964993536