Modelling non-proportional hazard for survival data with different systematic components

Detalhes bibliográficos
Autor(a) principal: Prataviera, Fabio
Data de Publicação: 2020
Outros Autores: Loibel, Selene M. C. [UNESP], Grego, Kathleen F., Ortega, Edwin M. M., Cordeiro, Gauss M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10651-020-00453-5
http://hdl.handle.net/11449/195478
Resumo: We propose a new extended regression model based on the logarithm of the generalized odd log-logistic Weibull distribution with four systematic components for the analysis of survival data. This regression model can be very useful and could give more realistic fits than other special regression models. We obtain the maximum likelihood estimates of the model parameters for censored data and address influence diagnostics and residual analysis. We prove empirically the importance of the proposed regression by means of a real data set (survival times of the captive snakes) from a study carried out at the Herpetology Laboratory of the Butantan Institute in Sao Paulo, Brazil.
id UNSP_458576b9748e964c82a49e042fbb7867
oai_identifier_str oai:repositorio.unesp.br:11449/195478
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Modelling non-proportional hazard for survival data with different systematic componentsCensored dataGeneralized odd log-logistic WeibullMaximum likelihoodNon-proportional hazardRegression modelSurvival analysisWe propose a new extended regression model based on the logarithm of the generalized odd log-logistic Weibull distribution with four systematic components for the analysis of survival data. This regression model can be very useful and could give more realistic fits than other special regression models. We obtain the maximum likelihood estimates of the model parameters for censored data and address influence diagnostics and residual analysis. We prove empirically the importance of the proposed regression by means of a real data set (survival times of the captive snakes) from a study carried out at the Herpetology Laboratory of the Butantan Institute in Sao Paulo, Brazil.Univ Sao Paulo, Dept Ciencias Exatas, Piracicaba, SP, BrazilUniv Estadual Paulista, Sao Paulo, SP, BrazilInst Butantan, Lab Herpetol, Sao Paulo, SP, BrazilUniv Fed Pernambuco, Dept Estat, Recife, PE, BrazilUniv Estadual Paulista, Sao Paulo, SP, BrazilSpringerUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Inst ButantanUniversidade Federal de Pernambuco (UFPE)Prataviera, FabioLoibel, Selene M. C. [UNESP]Grego, Kathleen F.Ortega, Edwin M. M.Cordeiro, Gauss M.2020-12-10T17:35:55Z2020-12-10T17:35:55Z2020-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article467-489http://dx.doi.org/10.1007/s10651-020-00453-5Environmental And Ecological Statistics. Dordrecht: Springer, v. 27, n. 3, p. 467-489, 2020.1352-8505http://hdl.handle.net/11449/19547810.1007/s10651-020-00453-5WOS:000544620000001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEnvironmental And Ecological Statisticsinfo:eu-repo/semantics/openAccess2021-10-23T08:53:46Zoai:repositorio.unesp.br:11449/195478Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:48:28.322387Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Modelling non-proportional hazard for survival data with different systematic components
title Modelling non-proportional hazard for survival data with different systematic components
spellingShingle Modelling non-proportional hazard for survival data with different systematic components
Prataviera, Fabio
Censored data
Generalized odd log-logistic Weibull
Maximum likelihood
Non-proportional hazard
Regression model
Survival analysis
title_short Modelling non-proportional hazard for survival data with different systematic components
title_full Modelling non-proportional hazard for survival data with different systematic components
title_fullStr Modelling non-proportional hazard for survival data with different systematic components
title_full_unstemmed Modelling non-proportional hazard for survival data with different systematic components
title_sort Modelling non-proportional hazard for survival data with different systematic components
author Prataviera, Fabio
author_facet Prataviera, Fabio
Loibel, Selene M. C. [UNESP]
Grego, Kathleen F.
Ortega, Edwin M. M.
Cordeiro, Gauss M.
author_role author
author2 Loibel, Selene M. C. [UNESP]
Grego, Kathleen F.
Ortega, Edwin M. M.
Cordeiro, Gauss M.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Inst Butantan
Universidade Federal de Pernambuco (UFPE)
dc.contributor.author.fl_str_mv Prataviera, Fabio
Loibel, Selene M. C. [UNESP]
Grego, Kathleen F.
Ortega, Edwin M. M.
Cordeiro, Gauss M.
dc.subject.por.fl_str_mv Censored data
Generalized odd log-logistic Weibull
Maximum likelihood
Non-proportional hazard
Regression model
Survival analysis
topic Censored data
Generalized odd log-logistic Weibull
Maximum likelihood
Non-proportional hazard
Regression model
Survival analysis
description We propose a new extended regression model based on the logarithm of the generalized odd log-logistic Weibull distribution with four systematic components for the analysis of survival data. This regression model can be very useful and could give more realistic fits than other special regression models. We obtain the maximum likelihood estimates of the model parameters for censored data and address influence diagnostics and residual analysis. We prove empirically the importance of the proposed regression by means of a real data set (survival times of the captive snakes) from a study carried out at the Herpetology Laboratory of the Butantan Institute in Sao Paulo, Brazil.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10T17:35:55Z
2020-12-10T17:35:55Z
2020-06-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10651-020-00453-5
Environmental And Ecological Statistics. Dordrecht: Springer, v. 27, n. 3, p. 467-489, 2020.
1352-8505
http://hdl.handle.net/11449/195478
10.1007/s10651-020-00453-5
WOS:000544620000001
url http://dx.doi.org/10.1007/s10651-020-00453-5
http://hdl.handle.net/11449/195478
identifier_str_mv Environmental And Ecological Statistics. Dordrecht: Springer, v. 27, n. 3, p. 467-489, 2020.
1352-8505
10.1007/s10651-020-00453-5
WOS:000544620000001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Environmental And Ecological Statistics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 467-489
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128982462234624