Modelling non-proportional hazard for survival data with different systematic components
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s10651-020-00453-5 http://hdl.handle.net/11449/195478 |
Resumo: | We propose a new extended regression model based on the logarithm of the generalized odd log-logistic Weibull distribution with four systematic components for the analysis of survival data. This regression model can be very useful and could give more realistic fits than other special regression models. We obtain the maximum likelihood estimates of the model parameters for censored data and address influence diagnostics and residual analysis. We prove empirically the importance of the proposed regression by means of a real data set (survival times of the captive snakes) from a study carried out at the Herpetology Laboratory of the Butantan Institute in Sao Paulo, Brazil. |
id |
UNSP_458576b9748e964c82a49e042fbb7867 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/195478 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Modelling non-proportional hazard for survival data with different systematic componentsCensored dataGeneralized odd log-logistic WeibullMaximum likelihoodNon-proportional hazardRegression modelSurvival analysisWe propose a new extended regression model based on the logarithm of the generalized odd log-logistic Weibull distribution with four systematic components for the analysis of survival data. This regression model can be very useful and could give more realistic fits than other special regression models. We obtain the maximum likelihood estimates of the model parameters for censored data and address influence diagnostics and residual analysis. We prove empirically the importance of the proposed regression by means of a real data set (survival times of the captive snakes) from a study carried out at the Herpetology Laboratory of the Butantan Institute in Sao Paulo, Brazil.Univ Sao Paulo, Dept Ciencias Exatas, Piracicaba, SP, BrazilUniv Estadual Paulista, Sao Paulo, SP, BrazilInst Butantan, Lab Herpetol, Sao Paulo, SP, BrazilUniv Fed Pernambuco, Dept Estat, Recife, PE, BrazilUniv Estadual Paulista, Sao Paulo, SP, BrazilSpringerUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Inst ButantanUniversidade Federal de Pernambuco (UFPE)Prataviera, FabioLoibel, Selene M. C. [UNESP]Grego, Kathleen F.Ortega, Edwin M. M.Cordeiro, Gauss M.2020-12-10T17:35:55Z2020-12-10T17:35:55Z2020-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article467-489http://dx.doi.org/10.1007/s10651-020-00453-5Environmental And Ecological Statistics. Dordrecht: Springer, v. 27, n. 3, p. 467-489, 2020.1352-8505http://hdl.handle.net/11449/19547810.1007/s10651-020-00453-5WOS:000544620000001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEnvironmental And Ecological Statisticsinfo:eu-repo/semantics/openAccess2021-10-23T08:53:46Zoai:repositorio.unesp.br:11449/195478Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:48:28.322387Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Modelling non-proportional hazard for survival data with different systematic components |
title |
Modelling non-proportional hazard for survival data with different systematic components |
spellingShingle |
Modelling non-proportional hazard for survival data with different systematic components Prataviera, Fabio Censored data Generalized odd log-logistic Weibull Maximum likelihood Non-proportional hazard Regression model Survival analysis |
title_short |
Modelling non-proportional hazard for survival data with different systematic components |
title_full |
Modelling non-proportional hazard for survival data with different systematic components |
title_fullStr |
Modelling non-proportional hazard for survival data with different systematic components |
title_full_unstemmed |
Modelling non-proportional hazard for survival data with different systematic components |
title_sort |
Modelling non-proportional hazard for survival data with different systematic components |
author |
Prataviera, Fabio |
author_facet |
Prataviera, Fabio Loibel, Selene M. C. [UNESP] Grego, Kathleen F. Ortega, Edwin M. M. Cordeiro, Gauss M. |
author_role |
author |
author2 |
Loibel, Selene M. C. [UNESP] Grego, Kathleen F. Ortega, Edwin M. M. Cordeiro, Gauss M. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) Inst Butantan Universidade Federal de Pernambuco (UFPE) |
dc.contributor.author.fl_str_mv |
Prataviera, Fabio Loibel, Selene M. C. [UNESP] Grego, Kathleen F. Ortega, Edwin M. M. Cordeiro, Gauss M. |
dc.subject.por.fl_str_mv |
Censored data Generalized odd log-logistic Weibull Maximum likelihood Non-proportional hazard Regression model Survival analysis |
topic |
Censored data Generalized odd log-logistic Weibull Maximum likelihood Non-proportional hazard Regression model Survival analysis |
description |
We propose a new extended regression model based on the logarithm of the generalized odd log-logistic Weibull distribution with four systematic components for the analysis of survival data. This regression model can be very useful and could give more realistic fits than other special regression models. We obtain the maximum likelihood estimates of the model parameters for censored data and address influence diagnostics and residual analysis. We prove empirically the importance of the proposed regression by means of a real data set (survival times of the captive snakes) from a study carried out at the Herpetology Laboratory of the Butantan Institute in Sao Paulo, Brazil. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-10T17:35:55Z 2020-12-10T17:35:55Z 2020-06-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s10651-020-00453-5 Environmental And Ecological Statistics. Dordrecht: Springer, v. 27, n. 3, p. 467-489, 2020. 1352-8505 http://hdl.handle.net/11449/195478 10.1007/s10651-020-00453-5 WOS:000544620000001 |
url |
http://dx.doi.org/10.1007/s10651-020-00453-5 http://hdl.handle.net/11449/195478 |
identifier_str_mv |
Environmental And Ecological Statistics. Dordrecht: Springer, v. 27, n. 3, p. 467-489, 2020. 1352-8505 10.1007/s10651-020-00453-5 WOS:000544620000001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Environmental And Ecological Statistics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
467-489 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128982462234624 |