The Log-Burr XII Regression Model for Grouped Survival Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | http://www.repositorio.ufba.br/ri/handle/ri/7081 |
Resumo: | The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data. |
id |
UFBA-2_fd550b09eed0974bf1b556162dfdde36 |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/7081 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
Hashimoto, Elizabeth M.Ortega, Edwin M. M.Cordeiro, Gauss MoutinhoBarreto, Mauricio LimaHashimoto, Elizabeth M.Ortega, Edwin M. M.Cordeiro, Gauss MoutinhoBarreto, Mauricio Lima2012-11-03T04:44:00Z2012-11-03T04:44:00Z2012http://www.repositorio.ufba.br/ri/handle/ri/7081v.22, n.1, p.141-59The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.Submitted by Maria Creuza Silva (mariakreuza@yahoo.com.br) on 2012-11-03T04:44:00Z No. of bitstreams: 1 The Log-Burr 2012.pdf: 838144 bytes, checksum: 6c0cf92f26dcb140afd6a1b995e02e8c (MD5)Made available in DSpace on 2012-11-03T04:44:00Z (GMT). No. of bitstreams: 1 The Log-Burr 2012.pdf: 838144 bytes, checksum: 6c0cf92f26dcb140afd6a1b995e02e8c (MD5) Previous issue date: 2012-01PhiladelphiaTaylor & Francis Grouphttp://www.tandfonline.com/doi/pdf/10.1080/10543406.2010.509527reponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBABurr XII DistributionSurvival DataRegression ModelSensitivity AnalysisThe Log-Burr XII Regression Model for Grouped Survival DataJ Biopharm Statinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleenginfo:eu-repo/semantics/openAccessORIGINALThe Log-Burr 2012.pdfThe Log-Burr 2012.pdfapplication/pdf838144https://repositorio.ufba.br/bitstream/ri/7081/1/The%20Log-Burr%202012.pdf6c0cf92f26dcb140afd6a1b995e02e8cMD51LICENSElicense.txtlicense.txttext/plain1809https://repositorio.ufba.br/bitstream/ri/7081/2/license.txt8bb3e3eb871f5854a9ec419f68651b60MD52TEXTThe Log-Burr 2012.pdf.txtThe Log-Burr 2012.pdf.txtExtracted texttext/plain45552https://repositorio.ufba.br/bitstream/ri/7081/3/The%20Log-Burr%202012.pdf.txt9eb3af0ebf9d8a221b7b6d7886f5e217MD53ri/70812022-09-28 11:58:17.141oai:repositorio.ufba.br:ri/7081VGVybW8gZGUgTGljZW7Dp2EsIG7Do28gZXhjbHVzaXZvLCBwYXJhIG8gZGVww7NzaXRvIG5vIHJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQkEKCiAgICBQZWxvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28gZGUgZG9jdW1lbnRvcywgbyBhdXRvciBvdSBzZXUKcmVwcmVzZW50YW50ZSBsZWdhbCwgYW8gYWNlaXRhciBlc3NlIHRlcm1vIGRlIGxpY2Vuw6dhLCBjb25jZWRlIGFvClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRhIEJhaGlhIG8gZGlyZWl0bwpkZSBtYW50ZXIgdW1hIGPDs3BpYSBlbSBzZXUgcmVwb3NpdMOzcmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCAKZGUgcHJlc2VydmHDp8Ojby4gRXNzZXMgdGVybW9zLCBuw6NvIGV4Y2x1c2l2b3MsIG1hbnTDqm0gb3MgZGlyZWl0b3MgZGUgCmF1dG9yL2NvcHlyaWdodCwgbWFzIGVudGVuZGUgbyBkb2N1bWVudG8gY29tbyBwYXJ0ZSBkbyBhY2Vydm8gaW50ZWxlY3R1YWwgZGVzc2EgVW5pdmVyc2lkYWRlLiAKCiAgICBQYXJhIG9zIGRvY3VtZW50b3MgcHVibGljYWRvcyBjb20gcmVwYXNzZSBkZSBkaXJlaXRvcyBkZSBkaXN0cmlidWnDp8OjbywgZXNzZSB0ZXJtbyBkZSBsaWNlbsOnYSBlbnRlbmRlIHF1ZTogCgogICAgTWFudGVuZG8gb3MgIGRpcmVpdG9zIGF1dG9yYWlzLCByZXBhc3NhZG9zIGEgdGVyY2Vpcm9zLCBlbSBjYXNvIApkZSBwdWJsaWNhw6fDtWVzLCBvIHJlcG9zaXTDs3JpbyBwb2RlIHJlc3RyaW5naXIgbyBhY2Vzc28gYW8gdGV4dG8gCmludGVncmFsLCBtYXMgbGliZXJhIGFzIGluZm9ybWHDp8O1ZXMgc29icmUgbyBkb2N1bWVudG8gKE1ldGFkYWRvcyBkZXNjcml0aXZvcykuCgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXDp8OjbyBjaWVudMOtZmljYSBjb20gYXMgcmVzdHJpw6fDtWVzIGltcG9zdGFzIHBlbG9zIAplZGl0b3JlcyBkZSBwZXJpw7NkaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNhw6fDtWVzIGVtIGluaWNpYXRpdmFzIHF1ZSBzZWd1ZW0gYSBwb2zDrcKsdGljYSBkZSAKQWNlc3NvIEFiZXJ0bywgb3MgZGVww7NzaXRvcyBjb21wdWxzw7NyaW9zIG5lc3NlIHJlcG9zaXTDs3JpbyBtYW50w6ptIApvcyBkaXJlaXRvcyBhdXRvcmFpcywgbWFzIG1hbnTDqW0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0YcOnw6NvIGRlc3NlIHRlcm1vIG7Do28gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7Dp2EsIHBvZGUgc2VyIGFjZWl0byBwZWxvIAphdXRvciwgZGV0ZW50b3JlcyBkZSBkaXJlaXRvcyBlL291IHRlcmNlaXJvcyBhbXBhcmFkb3MgcGVsYSAKdW5pdmVyc2lkYWRlLiBEZXZpZG8gYW9zIGRpZmVyZW50ZXMgcHJvY2Vzc29zIHBlbG8gcXVhbCBhIHN1Ym1pc3PDo28gCnBvZGUgb2NvcnJlciwgbyByZXBvc2l0w7NyaW8gcGVybWl0ZSBhIGFjZWl0YcOnw6NvIGRhIGxpY2Vuw6dhIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnDp8Ojby4KRepositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-09-28T14:58:17Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
The Log-Burr XII Regression Model for Grouped Survival Data |
dc.title.alternative.pt_BR.fl_str_mv |
J Biopharm Stat |
title |
The Log-Burr XII Regression Model for Grouped Survival Data |
spellingShingle |
The Log-Burr XII Regression Model for Grouped Survival Data Hashimoto, Elizabeth M. Burr XII Distribution Survival Data Regression Model Sensitivity Analysis |
title_short |
The Log-Burr XII Regression Model for Grouped Survival Data |
title_full |
The Log-Burr XII Regression Model for Grouped Survival Data |
title_fullStr |
The Log-Burr XII Regression Model for Grouped Survival Data |
title_full_unstemmed |
The Log-Burr XII Regression Model for Grouped Survival Data |
title_sort |
The Log-Burr XII Regression Model for Grouped Survival Data |
author |
Hashimoto, Elizabeth M. |
author_facet |
Hashimoto, Elizabeth M. Ortega, Edwin M. M. Cordeiro, Gauss Moutinho Barreto, Mauricio Lima |
author_role |
author |
author2 |
Ortega, Edwin M. M. Cordeiro, Gauss Moutinho Barreto, Mauricio Lima |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Hashimoto, Elizabeth M. Ortega, Edwin M. M. Cordeiro, Gauss Moutinho Barreto, Mauricio Lima Hashimoto, Elizabeth M. Ortega, Edwin M. M. Cordeiro, Gauss Moutinho Barreto, Mauricio Lima |
dc.subject.por.fl_str_mv |
Burr XII Distribution Survival Data Regression Model Sensitivity Analysis |
topic |
Burr XII Distribution Survival Data Regression Model Sensitivity Analysis |
description |
The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data. |
publishDate |
2012 |
dc.date.accessioned.fl_str_mv |
2012-11-03T04:44:00Z |
dc.date.available.fl_str_mv |
2012-11-03T04:44:00Z |
dc.date.issued.fl_str_mv |
2012 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufba.br/ri/handle/ri/7081 |
dc.identifier.number.pt_BR.fl_str_mv |
v.22, n.1, p.141-59 |
url |
http://www.repositorio.ufba.br/ri/handle/ri/7081 |
identifier_str_mv |
v.22, n.1, p.141-59 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis Group |
publisher.none.fl_str_mv |
Taylor & Francis Group |
dc.source.pt_BR.fl_str_mv |
http://www.tandfonline.com/doi/pdf/10.1080/10543406.2010.509527 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/7081/1/The%20Log-Burr%202012.pdf https://repositorio.ufba.br/bitstream/ri/7081/2/license.txt https://repositorio.ufba.br/bitstream/ri/7081/3/The%20Log-Burr%202012.pdf.txt |
bitstream.checksum.fl_str_mv |
6c0cf92f26dcb140afd6a1b995e02e8c 8bb3e3eb871f5854a9ec419f68651b60 9eb3af0ebf9d8a221b7b6d7886f5e217 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459409734500352 |