The Log-Burr XII Regression Model for Grouped Survival Data

Detalhes bibliográficos
Autor(a) principal: Hashimoto, Elizabeth M.
Data de Publicação: 2012
Outros Autores: Ortega, Edwin M. M., Cordeiro, Gauss Moutinho, Barreto, Mauricio Lima
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://www.repositorio.ufba.br/ri/handle/ri/7081
Resumo: The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.
id UFBA-2_fd550b09eed0974bf1b556162dfdde36
oai_identifier_str oai:repositorio.ufba.br:ri/7081
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Hashimoto, Elizabeth M.Ortega, Edwin M. M.Cordeiro, Gauss MoutinhoBarreto, Mauricio LimaHashimoto, Elizabeth M.Ortega, Edwin M. M.Cordeiro, Gauss MoutinhoBarreto, Mauricio Lima2012-11-03T04:44:00Z2012-11-03T04:44:00Z2012http://www.repositorio.ufba.br/ri/handle/ri/7081v.22, n.1, p.141-59The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.Submitted by Maria Creuza Silva (mariakreuza@yahoo.com.br) on 2012-11-03T04:44:00Z No. of bitstreams: 1 The Log-Burr 2012.pdf: 838144 bytes, checksum: 6c0cf92f26dcb140afd6a1b995e02e8c (MD5)Made available in DSpace on 2012-11-03T04:44:00Z (GMT). No. of bitstreams: 1 The Log-Burr 2012.pdf: 838144 bytes, checksum: 6c0cf92f26dcb140afd6a1b995e02e8c (MD5) Previous issue date: 2012-01PhiladelphiaTaylor & Francis Grouphttp://www.tandfonline.com/doi/pdf/10.1080/10543406.2010.509527reponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBABurr XII DistributionSurvival DataRegression ModelSensitivity AnalysisThe Log-Burr XII Regression Model for Grouped Survival DataJ Biopharm Statinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleenginfo:eu-repo/semantics/openAccessORIGINALThe Log-Burr 2012.pdfThe Log-Burr 2012.pdfapplication/pdf838144https://repositorio.ufba.br/bitstream/ri/7081/1/The%20Log-Burr%202012.pdf6c0cf92f26dcb140afd6a1b995e02e8cMD51LICENSElicense.txtlicense.txttext/plain1809https://repositorio.ufba.br/bitstream/ri/7081/2/license.txt8bb3e3eb871f5854a9ec419f68651b60MD52TEXTThe Log-Burr 2012.pdf.txtThe Log-Burr 2012.pdf.txtExtracted texttext/plain45552https://repositorio.ufba.br/bitstream/ri/7081/3/The%20Log-Burr%202012.pdf.txt9eb3af0ebf9d8a221b7b6d7886f5e217MD53ri/70812022-09-28 11:58:17.141oai:repositorio.ufba.br:ri/7081VGVybW8gZGUgTGljZW7Dp2EsIG7Do28gZXhjbHVzaXZvLCBwYXJhIG8gZGVww7NzaXRvIG5vIHJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQkEKCiAgICBQZWxvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28gZGUgZG9jdW1lbnRvcywgbyBhdXRvciBvdSBzZXUKcmVwcmVzZW50YW50ZSBsZWdhbCwgYW8gYWNlaXRhciBlc3NlIHRlcm1vIGRlIGxpY2Vuw6dhLCBjb25jZWRlIGFvClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRhIEJhaGlhIG8gZGlyZWl0bwpkZSBtYW50ZXIgdW1hIGPDs3BpYSBlbSBzZXUgcmVwb3NpdMOzcmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCAKZGUgcHJlc2VydmHDp8Ojby4gRXNzZXMgdGVybW9zLCBuw6NvIGV4Y2x1c2l2b3MsIG1hbnTDqm0gb3MgZGlyZWl0b3MgZGUgCmF1dG9yL2NvcHlyaWdodCwgbWFzIGVudGVuZGUgbyBkb2N1bWVudG8gY29tbyBwYXJ0ZSBkbyBhY2Vydm8gaW50ZWxlY3R1YWwgZGVzc2EgVW5pdmVyc2lkYWRlLiAKCiAgICBQYXJhIG9zIGRvY3VtZW50b3MgcHVibGljYWRvcyBjb20gcmVwYXNzZSBkZSBkaXJlaXRvcyBkZSBkaXN0cmlidWnDp8OjbywgZXNzZSB0ZXJtbyBkZSBsaWNlbsOnYSBlbnRlbmRlIHF1ZTogCgogICAgTWFudGVuZG8gb3MgIGRpcmVpdG9zIGF1dG9yYWlzLCByZXBhc3NhZG9zIGEgdGVyY2Vpcm9zLCBlbSBjYXNvIApkZSBwdWJsaWNhw6fDtWVzLCBvIHJlcG9zaXTDs3JpbyBwb2RlIHJlc3RyaW5naXIgbyBhY2Vzc28gYW8gdGV4dG8gCmludGVncmFsLCBtYXMgbGliZXJhIGFzIGluZm9ybWHDp8O1ZXMgc29icmUgbyBkb2N1bWVudG8gKE1ldGFkYWRvcyBkZXNjcml0aXZvcykuCgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXDp8OjbyBjaWVudMOtZmljYSBjb20gYXMgcmVzdHJpw6fDtWVzIGltcG9zdGFzIHBlbG9zIAplZGl0b3JlcyBkZSBwZXJpw7NkaWNvcy4gCgogICAgUGFyYSBhcyBwdWJsaWNhw6fDtWVzIGVtIGluaWNpYXRpdmFzIHF1ZSBzZWd1ZW0gYSBwb2zDrcKsdGljYSBkZSAKQWNlc3NvIEFiZXJ0bywgb3MgZGVww7NzaXRvcyBjb21wdWxzw7NyaW9zIG5lc3NlIHJlcG9zaXTDs3JpbyBtYW50w6ptIApvcyBkaXJlaXRvcyBhdXRvcmFpcywgbWFzIG1hbnTDqW0gbyBhY2Vzc28gaXJyZXN0cml0byBhbyBtZXRhZGFkb3MgCmUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0YcOnw6NvIGRlc3NlIHRlcm1vIG7Do28gbmVjZXNzaXRhIGRlIApjb25zZW50aW1lbnRvIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgCmVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KCiAgICBFbSBhbWJvcyBvIGNhc28sIGVzc2UgdGVybW8gZGUgbGljZW7Dp2EsIHBvZGUgc2VyIGFjZWl0byBwZWxvIAphdXRvciwgZGV0ZW50b3JlcyBkZSBkaXJlaXRvcyBlL291IHRlcmNlaXJvcyBhbXBhcmFkb3MgcGVsYSAKdW5pdmVyc2lkYWRlLiBEZXZpZG8gYW9zIGRpZmVyZW50ZXMgcHJvY2Vzc29zIHBlbG8gcXVhbCBhIHN1Ym1pc3PDo28gCnBvZGUgb2NvcnJlciwgbyByZXBvc2l0w7NyaW8gcGVybWl0ZSBhIGFjZWl0YcOnw6NvIGRhIGxpY2Vuw6dhIHBvciAKdGVyY2Vpcm9zLCBzb21lbnRlIG5vcyBjYXNvcyBkZSBkb2N1bWVudG9zIHByb2R1emlkb3MgcG9yIGludGVncmFudGVzIApkYSBVRkJBIGUgc3VibWV0aWRvcyBwb3IgcGVzc29hcyBhbXBhcmFkYXMgcG9yIGVzdGEgaW5zdGl0dWnDp8Ojby4KRepositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-09-28T14:58:17Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv The Log-Burr XII Regression Model for Grouped Survival Data
dc.title.alternative.pt_BR.fl_str_mv J Biopharm Stat
title The Log-Burr XII Regression Model for Grouped Survival Data
spellingShingle The Log-Burr XII Regression Model for Grouped Survival Data
Hashimoto, Elizabeth M.
Burr XII Distribution
Survival Data
Regression Model
Sensitivity Analysis
title_short The Log-Burr XII Regression Model for Grouped Survival Data
title_full The Log-Burr XII Regression Model for Grouped Survival Data
title_fullStr The Log-Burr XII Regression Model for Grouped Survival Data
title_full_unstemmed The Log-Burr XII Regression Model for Grouped Survival Data
title_sort The Log-Burr XII Regression Model for Grouped Survival Data
author Hashimoto, Elizabeth M.
author_facet Hashimoto, Elizabeth M.
Ortega, Edwin M. M.
Cordeiro, Gauss Moutinho
Barreto, Mauricio Lima
author_role author
author2 Ortega, Edwin M. M.
Cordeiro, Gauss Moutinho
Barreto, Mauricio Lima
author2_role author
author
author
dc.contributor.author.fl_str_mv Hashimoto, Elizabeth M.
Ortega, Edwin M. M.
Cordeiro, Gauss Moutinho
Barreto, Mauricio Lima
Hashimoto, Elizabeth M.
Ortega, Edwin M. M.
Cordeiro, Gauss Moutinho
Barreto, Mauricio Lima
dc.subject.por.fl_str_mv Burr XII Distribution
Survival Data
Regression Model
Sensitivity Analysis
topic Burr XII Distribution
Survival Data
Regression Model
Sensitivity Analysis
description The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.
publishDate 2012
dc.date.accessioned.fl_str_mv 2012-11-03T04:44:00Z
dc.date.available.fl_str_mv 2012-11-03T04:44:00Z
dc.date.issued.fl_str_mv 2012
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.ufba.br/ri/handle/ri/7081
dc.identifier.number.pt_BR.fl_str_mv v.22, n.1, p.141-59
url http://www.repositorio.ufba.br/ri/handle/ri/7081
identifier_str_mv v.22, n.1, p.141-59
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor & Francis Group
publisher.none.fl_str_mv Taylor & Francis Group
dc.source.pt_BR.fl_str_mv http://www.tandfonline.com/doi/pdf/10.1080/10543406.2010.509527
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/7081/1/The%20Log-Burr%202012.pdf
https://repositorio.ufba.br/bitstream/ri/7081/2/license.txt
https://repositorio.ufba.br/bitstream/ri/7081/3/The%20Log-Burr%202012.pdf.txt
bitstream.checksum.fl_str_mv 6c0cf92f26dcb140afd6a1b995e02e8c
8bb3e3eb871f5854a9ec419f68651b60
9eb3af0ebf9d8a221b7b6d7886f5e217
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1808459409734500352