Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation

Detalhes bibliográficos
Autor(a) principal: Reis Júnior, Dirceu Silveira
Data de Publicação: 2005
Outros Autores: Stedinger, Jery Russell, Martins, Eduardo Sávio Passos Rodrigues
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/59394
Resumo: This paper develops a Bayesian approach to analysis of a generalized least squares(GLS) regression model for regional analyses of hydrologic data. The new approachallows computation of the posterior distributions of the parameters and the model errorvariance using a quasi-analytic approach. Two regional skew estimation studies illustratethe value of the Bayesian GLS approach for regional statistical analysis of a shapeparameter and demonstrate that regional skew models can be relatively precise witheffective record lengths in excess of 60 years. With Bayesian GLS the marginal posteriordistribution of the model error variance and the corresponding mean and variance of theparameters can be computed directly, thereby providing a simple but important extension ofthe regional GLS regression procedures popularized by Tasker and Stedinger (1989), whichis sensitive to the likely values of the model error variance when it is small relative to thesampling error in the at-site estimator.
id UFC-7_8dcb6a1814b0e8c7e65c526c7c9c2987
oai_identifier_str oai:repositorio.ufc.br:riufc/59394
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimationBayesian generalized least squares regression with application to log Pearson type 3 regional skew estimationHidrologiaAnálise estatisticoThis paper develops a Bayesian approach to analysis of a generalized least squares(GLS) regression model for regional analyses of hydrologic data. The new approachallows computation of the posterior distributions of the parameters and the model errorvariance using a quasi-analytic approach. Two regional skew estimation studies illustratethe value of the Bayesian GLS approach for regional statistical analysis of a shapeparameter and demonstrate that regional skew models can be relatively precise witheffective record lengths in excess of 60 years. With Bayesian GLS the marginal posteriordistribution of the model error variance and the corresponding mean and variance of theparameters can be computed directly, thereby providing a simple but important extension ofthe regional GLS regression procedures popularized by Tasker and Stedinger (1989), whichis sensitive to the likely values of the model error variance when it is small relative to thesampling error in the at-site estimator.Water Resources Research2021-07-08T15:19:45Z2021-07-08T15:19:45Z2005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfREIS JÚNIOR, Dirceu Silveira ; STEDINGER, Jery Russell ; MARTINS, Eduardo Savio Passos Rodrigues. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resources Research, United States, v. 41, 2005.1944-7973http://www.repositorio.ufc.br/handle/riufc/59394Reis Júnior, Dirceu SilveiraStedinger, Jery RussellMartins, Eduardo Sávio Passos Rodriguesporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-01-17T12:42:08Zoai:repositorio.ufc.br:riufc/59394Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:53:00.199635Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
title Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
spellingShingle Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
Reis Júnior, Dirceu Silveira
Hidrologia
Análise estatistico
title_short Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
title_full Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
title_fullStr Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
title_full_unstemmed Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
title_sort Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
author Reis Júnior, Dirceu Silveira
author_facet Reis Júnior, Dirceu Silveira
Stedinger, Jery Russell
Martins, Eduardo Sávio Passos Rodrigues
author_role author
author2 Stedinger, Jery Russell
Martins, Eduardo Sávio Passos Rodrigues
author2_role author
author
dc.contributor.author.fl_str_mv Reis Júnior, Dirceu Silveira
Stedinger, Jery Russell
Martins, Eduardo Sávio Passos Rodrigues
dc.subject.por.fl_str_mv Hidrologia
Análise estatistico
topic Hidrologia
Análise estatistico
description This paper develops a Bayesian approach to analysis of a generalized least squares(GLS) regression model for regional analyses of hydrologic data. The new approachallows computation of the posterior distributions of the parameters and the model errorvariance using a quasi-analytic approach. Two regional skew estimation studies illustratethe value of the Bayesian GLS approach for regional statistical analysis of a shapeparameter and demonstrate that regional skew models can be relatively precise witheffective record lengths in excess of 60 years. With Bayesian GLS the marginal posteriordistribution of the model error variance and the corresponding mean and variance of theparameters can be computed directly, thereby providing a simple but important extension ofthe regional GLS regression procedures popularized by Tasker and Stedinger (1989), whichis sensitive to the likely values of the model error variance when it is small relative to thesampling error in the at-site estimator.
publishDate 2005
dc.date.none.fl_str_mv 2005
2021-07-08T15:19:45Z
2021-07-08T15:19:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv REIS JÚNIOR, Dirceu Silveira ; STEDINGER, Jery Russell ; MARTINS, Eduardo Savio Passos Rodrigues. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resources Research, United States, v. 41, 2005.
1944-7973
http://www.repositorio.ufc.br/handle/riufc/59394
identifier_str_mv REIS JÚNIOR, Dirceu Silveira ; STEDINGER, Jery Russell ; MARTINS, Eduardo Savio Passos Rodrigues. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resources Research, United States, v. 41, 2005.
1944-7973
url http://www.repositorio.ufc.br/handle/riufc/59394
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Water Resources Research
publisher.none.fl_str_mv Water Resources Research
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028983098310656