Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/70409 |
Resumo: | The motivation for this research is the possibility of understanding interpersonal interactions in an increasingly instantaneous way. In turn, the academy has contributed to using Twitter as a sophisticated tool to capture real-time information from Internet users (Fan and Gordo, 2014, p. 76). The objective of this study was to identify, through the messages that are posted on Twitter, how the information that is disseminated online is associated with movements that occur in the Brazilian market, specifically with regard to returns and trading volume. The collection of data related to Twitter was done through the Tweepy library. The financial data were obtained through the Yahoo Finance database. The sentiment index was used after scraping the major financial market influencers on the social network and their textual interactions (tweets) with their audience. Accounts with the potential to influence individual investors were extracted from the profile of journalist Sérgio Charlab, who has an algorithm responsible for carrying out this ranking. The attribution of the feeling was done through machine learning, through the Textblob library. To meet the general objective of the research, two models were estimated, the first was a Simple Linear regression model and the second a VARMAX(8, 0) time series model. The analysis and interpretation of the data made it possible to perceive that, in general, a simple linear modeling would not benefit the individual investor in creating an investment strategy. The study starts from the premise that the individual investor is the one with little ability to use robust modeling to find an investment strategy through sentiment analysis. It was also found that there is the possibility of analyzing the financial market through non-linear modeling of time series, given the existing potential in the variables created from sentiment analysis, namely subjectivity and polarity. Furthermore, it was seen that the subjectivity of the messages has a predictive potential for the traded volume. Thus, the results are useful to show that there is a relationship between the information that is disclosed on the social network Twitter and the movements of the Brazilian stock market, bringing contributions to the literature. The study also brings practical contributions, since the activities that occur online on Twitter can be used as variables in investment strategies, since these are associated with market movements when the modeling is non-linear. |
id |
UFC-7_90df8dcfa4aed286aedbc1b01157a175 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/70409 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuaisAnálise de SentimentoTwitterMercado FinanceiroModelo de PrevisãoThe motivation for this research is the possibility of understanding interpersonal interactions in an increasingly instantaneous way. In turn, the academy has contributed to using Twitter as a sophisticated tool to capture real-time information from Internet users (Fan and Gordo, 2014, p. 76). The objective of this study was to identify, through the messages that are posted on Twitter, how the information that is disseminated online is associated with movements that occur in the Brazilian market, specifically with regard to returns and trading volume. The collection of data related to Twitter was done through the Tweepy library. The financial data were obtained through the Yahoo Finance database. The sentiment index was used after scraping the major financial market influencers on the social network and their textual interactions (tweets) with their audience. Accounts with the potential to influence individual investors were extracted from the profile of journalist Sérgio Charlab, who has an algorithm responsible for carrying out this ranking. The attribution of the feeling was done through machine learning, through the Textblob library. To meet the general objective of the research, two models were estimated, the first was a Simple Linear regression model and the second a VARMAX(8, 0) time series model. The analysis and interpretation of the data made it possible to perceive that, in general, a simple linear modeling would not benefit the individual investor in creating an investment strategy. The study starts from the premise that the individual investor is the one with little ability to use robust modeling to find an investment strategy through sentiment analysis. It was also found that there is the possibility of analyzing the financial market through non-linear modeling of time series, given the existing potential in the variables created from sentiment analysis, namely subjectivity and polarity. Furthermore, it was seen that the subjectivity of the messages has a predictive potential for the traded volume. Thus, the results are useful to show that there is a relationship between the information that is disclosed on the social network Twitter and the movements of the Brazilian stock market, bringing contributions to the literature. The study also brings practical contributions, since the activities that occur online on Twitter can be used as variables in investment strategies, since these are associated with market movements when the modeling is non-linear.A motivação para a presente pesquisa é o fato da possibilidade de compreender interações interpessoais de forma cada vez mais instantânea. Por sua vez, a academia tem contribuído para utilizar o Twitter como uma ferramenta sofisticada para capturar informações em tempo real dos internautas (Fan e Gordo, 2014, p. 76). O objetivo desse estudo foi identificar, por meio das mensagens que são postadas no Twitter, como as informações que são divulgados de forma on-line estão associadas aos movimentos que ocorrem no mercado brasileiro, especificamente no que tange aos retornos e ao volume de negócios. A coleta dos dados relacionados ao Twitter se deu por meio da biblioteca Tweepy. Já os dados financeiros foram obtidos mediante a base de dados Yahoo Finance. O índice de sentimento foi empregado após a raspagem dos grandes influenciadores do mercado financeiro na rede social e de suas interações textuais (tweets) com seu público. As contas com potencial de influenciar os investidores individuais foram extraídas do perfil do jornalista Sérgio Charlab que possui um algoritmo responsável por realizar este ranking. A atribuição do sentimento se deu por meio de machine learning, por intermédio da biblioteca Textblob. Para atender ao objetivo geral da pesquisa foram estimados dois modelos, o primeiro foi um modelo de regressão Linear Simples e o segundo um uma modelagem de séries temporais VARMAX(8, 0). A análise e intepretação dos dados possibilitou perceber que, em geral, uma modelagem linear simples não iria beneficiar o investidor individual em criar estratégia de investimento. O estudo parte da premissa que o investidor individual é aquele com pouca capacidade em utilizar modelagens robustas para encontrar estratégia de investimento por intermédio da análise de sentimento. Constatou-se ainda que existe a possibilidade de analisar o mercado financeiro através de modelagens não lineares de séries temporais, dado o potencial existente nas variáveis criadas a partir da análise de sentimento, a saber subjetividade e polaridade. Ademais, viu-se que a subjetividade das mensagens possui potencial preditivo ao volume negociado. Assim, os resultados são úteis para mostrar que existe relação entre as informações que são divulgadas na rede social Twitter e os movimentos do mercado acionário brasileiro, trazendo contribuições para a literatura. O estudo também traz contribuições práticas, uma vez que as atividades que ocorrem on-line no Twitter podem ser utilizadas como variáveis em estratégias de investimento, visto que essas estão associadas aos movimentos do mercado quando a modelagem é não-linear.Silva, Francisco Gildemir Ferreira daOliveira, Bruno Alves de2023-02-01T19:18:33Z2023-02-01T19:18:33Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfOLIVEIRA. Bruno Alves de. Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais. 2022. 43 f. Monografia (Graduação em Finanças) - Faculdade de Economia, Administração, Atuária e Contabilidade, Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/70409porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-01T19:18:33Zoai:repositorio.ufc.br:riufc/70409Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:57:34.550875Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais |
title |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais |
spellingShingle |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais Oliveira, Bruno Alves de Análise de Sentimento Mercado Financeiro Modelo de Previsão |
title_short |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais |
title_full |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais |
title_fullStr |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais |
title_full_unstemmed |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais |
title_sort |
Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais |
author |
Oliveira, Bruno Alves de |
author_facet |
Oliveira, Bruno Alves de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Francisco Gildemir Ferreira da |
dc.contributor.author.fl_str_mv |
Oliveira, Bruno Alves de |
dc.subject.por.fl_str_mv |
Análise de Sentimento Mercado Financeiro Modelo de Previsão |
topic |
Análise de Sentimento Mercado Financeiro Modelo de Previsão |
description |
The motivation for this research is the possibility of understanding interpersonal interactions in an increasingly instantaneous way. In turn, the academy has contributed to using Twitter as a sophisticated tool to capture real-time information from Internet users (Fan and Gordo, 2014, p. 76). The objective of this study was to identify, through the messages that are posted on Twitter, how the information that is disseminated online is associated with movements that occur in the Brazilian market, specifically with regard to returns and trading volume. The collection of data related to Twitter was done through the Tweepy library. The financial data were obtained through the Yahoo Finance database. The sentiment index was used after scraping the major financial market influencers on the social network and their textual interactions (tweets) with their audience. Accounts with the potential to influence individual investors were extracted from the profile of journalist Sérgio Charlab, who has an algorithm responsible for carrying out this ranking. The attribution of the feeling was done through machine learning, through the Textblob library. To meet the general objective of the research, two models were estimated, the first was a Simple Linear regression model and the second a VARMAX(8, 0) time series model. The analysis and interpretation of the data made it possible to perceive that, in general, a simple linear modeling would not benefit the individual investor in creating an investment strategy. The study starts from the premise that the individual investor is the one with little ability to use robust modeling to find an investment strategy through sentiment analysis. It was also found that there is the possibility of analyzing the financial market through non-linear modeling of time series, given the existing potential in the variables created from sentiment analysis, namely subjectivity and polarity. Furthermore, it was seen that the subjectivity of the messages has a predictive potential for the traded volume. Thus, the results are useful to show that there is a relationship between the information that is disclosed on the social network Twitter and the movements of the Brazilian stock market, bringing contributions to the literature. The study also brings practical contributions, since the activities that occur online on Twitter can be used as variables in investment strategies, since these are associated with market movements when the modeling is non-linear. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2023-02-01T19:18:33Z 2023-02-01T19:18:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
OLIVEIRA. Bruno Alves de. Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais. 2022. 43 f. Monografia (Graduação em Finanças) - Faculdade de Economia, Administração, Atuária e Contabilidade, Universidade Federal do Ceará, Fortaleza, 2022. http://www.repositorio.ufc.br/handle/riufc/70409 |
identifier_str_mv |
OLIVEIRA. Bruno Alves de. Impacto das opiniões dos grandes influenciadores e o efeito Twitter sobre os investidores individuais. 2022. 43 f. Monografia (Graduação em Finanças) - Faculdade de Economia, Administração, Atuária e Contabilidade, Universidade Federal do Ceará, Fortaleza, 2022. |
url |
http://www.repositorio.ufc.br/handle/riufc/70409 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813029012681785344 |