Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/59669 |
Resumo: | Venoms from ants comprise a rich source of bioactive peptides, including antimicrobial peptides. From the proteome and peptidome of the giant ant Dinoponera quadriceps venom, members of five known classes of antimicrobial peptides were disclosed (e.g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like types). Based on comparative analysis, these family members have structural determinants that indicate they could display antimicrobial activities. In previous works, pilosulin- and ponericin-like peptides were demonstrated to be active against bacteria, fungi, and parasites. Herein, the antifungal activity of ponericin- and pilosulin-like peptides were assessed, aiming at the expansion of the knowledge about AMPs in predatory ants and the development of new microbicide strategies to deal with difficult-to-treat fungal infections. Synthetic pilosulin- (Dq-2562, Dq-1503, and Dq-1319) and ponericin-like (Dq-3162) peptides were evaluated for their fungicide and fungistatic activities against different species of Candida, including a drug-resistant clinical strain. The MICs and MLCs were determined for all peptides individually and in combination with general antifungal drugs by the microdilution method. The time-kill kinetic curves were set up by means of a luminescent reagent, of which the light signal is proportional to the number of viable cells. The candicidal synergism observed by the combination of subinhibitory concentrations of peptides and general antimycotic drugs were quantified by the checkerboard test and fluorescent dye permeation assay. The influence of ergosterol on the antifungal activity was verified by supplementation of culture medium. The pilosulin- (Dq-2562 and Dq-1503) and ponericin-like (Dq-3162) were the most active peptides, displaying a broad spectrum of antifungal activity in vitro, with MICs in the range of 0.625 to 10 µM. The combination of peptides and conventional antimycotic drugs displayed a synergistic reduction in the MIC values of individual peptides and drugs, while soluble ergosterol in the culture medium increased the MICs. The fungicide and fungistatic activity of the individual peptides and peptides in combination with antimycotics were time-dependent with a rapid onset of action and long-lasting effect, which involved membrane disruption as an underlying mechanism of their action. Altogether, pilosulin- and ponericin-like peptides from the giant ant D. quadriceps venom display a broad-spectrum of candicidal activity, what allows their inclusion in the row of the antifungal peptides and gives support for further studies on the development of strategies to fight candidiasis. |
id |
UFC-7_b5e5e7a8100769ff4589df248f17cf20 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/59669 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugsAntifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugsVenenosFungosPeptídeosVenoms from ants comprise a rich source of bioactive peptides, including antimicrobial peptides. From the proteome and peptidome of the giant ant Dinoponera quadriceps venom, members of five known classes of antimicrobial peptides were disclosed (e.g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like types). Based on comparative analysis, these family members have structural determinants that indicate they could display antimicrobial activities. In previous works, pilosulin- and ponericin-like peptides were demonstrated to be active against bacteria, fungi, and parasites. Herein, the antifungal activity of ponericin- and pilosulin-like peptides were assessed, aiming at the expansion of the knowledge about AMPs in predatory ants and the development of new microbicide strategies to deal with difficult-to-treat fungal infections. Synthetic pilosulin- (Dq-2562, Dq-1503, and Dq-1319) and ponericin-like (Dq-3162) peptides were evaluated for their fungicide and fungistatic activities against different species of Candida, including a drug-resistant clinical strain. The MICs and MLCs were determined for all peptides individually and in combination with general antifungal drugs by the microdilution method. The time-kill kinetic curves were set up by means of a luminescent reagent, of which the light signal is proportional to the number of viable cells. The candicidal synergism observed by the combination of subinhibitory concentrations of peptides and general antimycotic drugs were quantified by the checkerboard test and fluorescent dye permeation assay. The influence of ergosterol on the antifungal activity was verified by supplementation of culture medium. The pilosulin- (Dq-2562 and Dq-1503) and ponericin-like (Dq-3162) were the most active peptides, displaying a broad spectrum of antifungal activity in vitro, with MICs in the range of 0.625 to 10 µM. The combination of peptides and conventional antimycotic drugs displayed a synergistic reduction in the MIC values of individual peptides and drugs, while soluble ergosterol in the culture medium increased the MICs. The fungicide and fungistatic activity of the individual peptides and peptides in combination with antimycotics were time-dependent with a rapid onset of action and long-lasting effect, which involved membrane disruption as an underlying mechanism of their action. Altogether, pilosulin- and ponericin-like peptides from the giant ant D. quadriceps venom display a broad-spectrum of candicidal activity, what allows their inclusion in the row of the antifungal peptides and gives support for further studies on the development of strategies to fight candidiasis.Antibiotics-basel2021-07-21T11:35:54Z2021-07-21T11:35:54Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLIMA, Hilania Valéria Doudou; CAVALCANTE, Carolina Sidrim de Paula; RÁDIS-BAPTISTA, Gandhi. Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs. Antibiotics-basel, v. 9, n. 6, 2020. Disponível em: https://doi.org/10.3390/antibiotics9060354. Acesso em: 21 jul. 20212079-6382http://www.repositorio.ufc.br/handle/riufc/59669Lima, Hilania Valéria DoudouCavalcante, Carolina Sidrim de PaulaRádis-Baptista, Gandhiengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2021-12-17T11:48:33Zoai:repositorio.ufc.br:riufc/59669Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:32:12.265042Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs |
title |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs |
spellingShingle |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs Lima, Hilania Valéria Doudou Venenos Fungos Peptídeos |
title_short |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs |
title_full |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs |
title_fullStr |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs |
title_full_unstemmed |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs |
title_sort |
Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs |
author |
Lima, Hilania Valéria Doudou |
author_facet |
Lima, Hilania Valéria Doudou Cavalcante, Carolina Sidrim de Paula Rádis-Baptista, Gandhi |
author_role |
author |
author2 |
Cavalcante, Carolina Sidrim de Paula Rádis-Baptista, Gandhi |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Lima, Hilania Valéria Doudou Cavalcante, Carolina Sidrim de Paula Rádis-Baptista, Gandhi |
dc.subject.por.fl_str_mv |
Venenos Fungos Peptídeos |
topic |
Venenos Fungos Peptídeos |
description |
Venoms from ants comprise a rich source of bioactive peptides, including antimicrobial peptides. From the proteome and peptidome of the giant ant Dinoponera quadriceps venom, members of five known classes of antimicrobial peptides were disclosed (e.g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like types). Based on comparative analysis, these family members have structural determinants that indicate they could display antimicrobial activities. In previous works, pilosulin- and ponericin-like peptides were demonstrated to be active against bacteria, fungi, and parasites. Herein, the antifungal activity of ponericin- and pilosulin-like peptides were assessed, aiming at the expansion of the knowledge about AMPs in predatory ants and the development of new microbicide strategies to deal with difficult-to-treat fungal infections. Synthetic pilosulin- (Dq-2562, Dq-1503, and Dq-1319) and ponericin-like (Dq-3162) peptides were evaluated for their fungicide and fungistatic activities against different species of Candida, including a drug-resistant clinical strain. The MICs and MLCs were determined for all peptides individually and in combination with general antifungal drugs by the microdilution method. The time-kill kinetic curves were set up by means of a luminescent reagent, of which the light signal is proportional to the number of viable cells. The candicidal synergism observed by the combination of subinhibitory concentrations of peptides and general antimycotic drugs were quantified by the checkerboard test and fluorescent dye permeation assay. The influence of ergosterol on the antifungal activity was verified by supplementation of culture medium. The pilosulin- (Dq-2562 and Dq-1503) and ponericin-like (Dq-3162) were the most active peptides, displaying a broad spectrum of antifungal activity in vitro, with MICs in the range of 0.625 to 10 µM. The combination of peptides and conventional antimycotic drugs displayed a synergistic reduction in the MIC values of individual peptides and drugs, while soluble ergosterol in the culture medium increased the MICs. The fungicide and fungistatic activity of the individual peptides and peptides in combination with antimycotics were time-dependent with a rapid onset of action and long-lasting effect, which involved membrane disruption as an underlying mechanism of their action. Altogether, pilosulin- and ponericin-like peptides from the giant ant D. quadriceps venom display a broad-spectrum of candicidal activity, what allows their inclusion in the row of the antifungal peptides and gives support for further studies on the development of strategies to fight candidiasis. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2021-07-21T11:35:54Z 2021-07-21T11:35:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LIMA, Hilania Valéria Doudou; CAVALCANTE, Carolina Sidrim de Paula; RÁDIS-BAPTISTA, Gandhi. Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs. Antibiotics-basel, v. 9, n. 6, 2020. Disponível em: https://doi.org/10.3390/antibiotics9060354. Acesso em: 21 jul. 2021 2079-6382 http://www.repositorio.ufc.br/handle/riufc/59669 |
identifier_str_mv |
LIMA, Hilania Valéria Doudou; CAVALCANTE, Carolina Sidrim de Paula; RÁDIS-BAPTISTA, Gandhi. Antifungal in vitro activity of pilosulin- and ponericin-like peptides from the giant ant dinoponera quadriceps and synergistic effects with antimycotic drugs. Antibiotics-basel, v. 9, n. 6, 2020. Disponível em: https://doi.org/10.3390/antibiotics9060354. Acesso em: 21 jul. 2021 2079-6382 |
url |
http://www.repositorio.ufc.br/handle/riufc/59669 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Antibiotics-basel |
publisher.none.fl_str_mv |
Antibiotics-basel |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028845410844672 |