Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/34925 |
Resumo: | The unifying theme of the five articles, [A,B,C,D,E], forming this dissertation is the existence and non-existence of continuous entire non-constant solutions for nonlinear differential operators on a Riemannian manifold M. The existence results of such solutions are proved by studying the asymptotic Dirichlet problem under different assumptions on the geometry of the manifold. Minimal graphic functions are studied in articles [A] and [D]. Article [A] deals with an existence result whereas in [D] we give both existence and non-existence results with respect to the curvature of M. Moreover p-harmonic functions are studied in [D]. Article [B] deals with the existence of A -harmonic functions under similar curvature assumptions as in [A]. In article [C] we study the existence of f-minimal graphs, which are generalisations of usual minimal graphs, and in the article [E] the Killing graphs on warped product manifolds. Before turning to the ideas and results of the research articles, we present some key concepts of the thesis and give a brief history of the development of the asymptotic Dirichlet problem. Due to the similarity of the techniques in [A] and [B], we treat them together in Section 3. Article [C] is treated in Section 4, article [D] in Section 5 and article [E] in Section 6. At the beginning of the Sections 3 – 6 we briefly give the background of the methods and techniques used in the articles. |
id |
UFC-7_bfc91ea68dc1bc0ec5b353ed7f7620c0 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/34925 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds.Cartan-Hadamard manifoldsMean curvaturep-LaplacianAsymptotic problemNonlinear partial differential equationsVariedades de Cartan-HadamardCurvatura médiap-laplacianoProblema assintóticoEquações diferenciais parciais não-linearesThe unifying theme of the five articles, [A,B,C,D,E], forming this dissertation is the existence and non-existence of continuous entire non-constant solutions for nonlinear differential operators on a Riemannian manifold M. The existence results of such solutions are proved by studying the asymptotic Dirichlet problem under different assumptions on the geometry of the manifold. Minimal graphic functions are studied in articles [A] and [D]. Article [A] deals with an existence result whereas in [D] we give both existence and non-existence results with respect to the curvature of M. Moreover p-harmonic functions are studied in [D]. Article [B] deals with the existence of A -harmonic functions under similar curvature assumptions as in [A]. In article [C] we study the existence of f-minimal graphs, which are generalisations of usual minimal graphs, and in the article [E] the Killing graphs on warped product manifolds. Before turning to the ideas and results of the research articles, we present some key concepts of the thesis and give a brief history of the development of the asymptotic Dirichlet problem. Due to the similarity of the techniques in [A] and [B], we treat them together in Section 3. Article [C] is treated in Section 4, article [D] in Section 5 and article [E] in Section 6. At the beginning of the Sections 3 – 6 we briefly give the background of the methods and techniques used in the articles.O tema que dá unidade aos artigos [A,B,C,D,E] que compõem esta dissertação é a existência e não-existência de soluções contínuas, inteiras, de equações diferenciais não-lineares em uma variedade Riemanniana M. Os resultados de existência de tais soluções são demonstrados estudando-se o problema de Dirichlet assintótico sob diversas hipóteses relativas a geometria da variedade. Funções que definem gráficos mínimos são estudadas nos artigos [A] e [D]. O artigo [A] lida com um resultado de existˆencia, ao passo que, em [D], obtemos tanto resultados de existˆencia quanto de n˜ao-existˆencia com respeito a curvatura de M. Al´em disso, fun¸c˜oes p-harmˆonicas s˜ao tamb´em estudadas em [D]. O artigo [B] lida com a existˆencia de fun¸c˜oes A -harmˆonicas sob hip´oteses de curvatura similares `aquelas em [A]. No artigo [C], estudamos a existˆencia de gr´aficos f- m´ınimos, os quais generalizam os gr´aficos m´ınimos usuais. Por fim, no artigo [E], tratamos de gr´aficos de Killing em produtos warped. Antes de passar `as ideias e resultados dos artigos de pesquisa. apresentamos alguns conceitos fundamentais da tese e um breve hist´orico das contribui¸c˜oes ao problema de Dirichlet assint´otico. Dada a similaridade das t´ecnicas em [A] e [B], tratamo-as con- juntamente na se¸c˜ao 3. O artigo [C] ´e, ent˜ao, considerado na se¸c˜ao 4, o artigo [D] na se¸c˜ao 5 e, por fim, o artigo [E] na se¸c˜ao 6. No in´ıcio das se¸c˜oes 3 – 6, descrevemos brevemente os m´etodos e t´ecniicas usados nos artigos correspondentes.Lira, Jorge Herbert Soares deHolopainen, Ilkka OlaviHeinonen, Esko Antero2018-08-20T14:56:55Z2018-08-20T14:56:55Z2018-03-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfHEINONEN, Esko Antero. Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. 2018. 166 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/34925engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-01-04T13:14:56Zoai:repositorio.ufc.br:riufc/34925Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:27:22.957312Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. |
title |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. |
spellingShingle |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. Heinonen, Esko Antero Cartan-Hadamard manifolds Mean curvature p-Laplacian Asymptotic problem Nonlinear partial differential equations Variedades de Cartan-Hadamard Curvatura média p-laplaciano Problema assintótico Equações diferenciais parciais não-lineares |
title_short |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. |
title_full |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. |
title_fullStr |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. |
title_full_unstemmed |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. |
title_sort |
Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. |
author |
Heinonen, Esko Antero |
author_facet |
Heinonen, Esko Antero |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lira, Jorge Herbert Soares de Holopainen, Ilkka Olavi |
dc.contributor.author.fl_str_mv |
Heinonen, Esko Antero |
dc.subject.por.fl_str_mv |
Cartan-Hadamard manifolds Mean curvature p-Laplacian Asymptotic problem Nonlinear partial differential equations Variedades de Cartan-Hadamard Curvatura média p-laplaciano Problema assintótico Equações diferenciais parciais não-lineares |
topic |
Cartan-Hadamard manifolds Mean curvature p-Laplacian Asymptotic problem Nonlinear partial differential equations Variedades de Cartan-Hadamard Curvatura média p-laplaciano Problema assintótico Equações diferenciais parciais não-lineares |
description |
The unifying theme of the five articles, [A,B,C,D,E], forming this dissertation is the existence and non-existence of continuous entire non-constant solutions for nonlinear differential operators on a Riemannian manifold M. The existence results of such solutions are proved by studying the asymptotic Dirichlet problem under different assumptions on the geometry of the manifold. Minimal graphic functions are studied in articles [A] and [D]. Article [A] deals with an existence result whereas in [D] we give both existence and non-existence results with respect to the curvature of M. Moreover p-harmonic functions are studied in [D]. Article [B] deals with the existence of A -harmonic functions under similar curvature assumptions as in [A]. In article [C] we study the existence of f-minimal graphs, which are generalisations of usual minimal graphs, and in the article [E] the Killing graphs on warped product manifolds. Before turning to the ideas and results of the research articles, we present some key concepts of the thesis and give a brief history of the development of the asymptotic Dirichlet problem. Due to the similarity of the techniques in [A] and [B], we treat them together in Section 3. Article [C] is treated in Section 4, article [D] in Section 5 and article [E] in Section 6. At the beginning of the Sections 3 – 6 we briefly give the background of the methods and techniques used in the articles. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-20T14:56:55Z 2018-08-20T14:56:55Z 2018-03-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
HEINONEN, Esko Antero. Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. 2018. 166 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018. http://www.repositorio.ufc.br/handle/riufc/34925 |
identifier_str_mv |
HEINONEN, Esko Antero. Dirichlet problems for mean curvature and p-harmonic equations on Cartan-Hadamard manifolds. 2018. 166 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018. |
url |
http://www.repositorio.ufc.br/handle/riufc/34925 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028723729891328 |