Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos

Detalhes bibliográficos
Autor(a) principal: Sousa, Diego Perdigão
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/49906
Resumo: Three-phase induction motors are one of the most important equipment of modern industry. However, in many situations, these equipment are subject to inappropriate conditions such as in environments with high temperatures and humidity, abrupt variations of load above specified, excessive vibrations, among others. These conditions make motors more susceptible to various failures, whether external or internal, which are obviously undesirable in industrial processes. In this context, the predictive maintenance plays a relevant role, where the detection and correct diagnosis of failures in a timely manner leads to increasing the useful life of the motor and, consequently, to the reduction of costs with production stoppage due to corrective maintenance. Considering these factors, this dissertation proposes a methodology for detecting short-circuit failures in three-phase induction motors, which involves prototypes-based algorithms. To this end, both unsupervised techniques - such as the K-means and supervised algorithm, such as the LVQ (Learning Vector Quantization) family classifiers are used. The methodology starts with the seeking of the optimal number of prototypes from the unsu- pervised analysis of clusters and techniques clustering validation. Then, the prototypes that were found are used in the supervised training of various classifiers of the LVQ family. The influence that each type of clustering validation criterion exerts on the various LVQ classifiers implemented is deeply evaluated. In particular, the GRLVQ (Generalized Relevance Learning Vector Quantization) classifier obtained the best results where it presented a maximum classifica- tion rate of 98.3%, with the Dunn and Silhouette criteria standing out as the most efficient in determining the optimal quantity of prototypes.
id UFC-7_e006c5ae1de3490936e5022505fcd263
oai_identifier_str oai:repositorio.ufc.br:riufc/49906
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótiposTeleinformáticaMotoresLocalização de falhas (Engenharia)Prototype-based learningThree-phase induction motorFailures detectionThree-phase induction motors are one of the most important equipment of modern industry. However, in many situations, these equipment are subject to inappropriate conditions such as in environments with high temperatures and humidity, abrupt variations of load above specified, excessive vibrations, among others. These conditions make motors more susceptible to various failures, whether external or internal, which are obviously undesirable in industrial processes. In this context, the predictive maintenance plays a relevant role, where the detection and correct diagnosis of failures in a timely manner leads to increasing the useful life of the motor and, consequently, to the reduction of costs with production stoppage due to corrective maintenance. Considering these factors, this dissertation proposes a methodology for detecting short-circuit failures in three-phase induction motors, which involves prototypes-based algorithms. To this end, both unsupervised techniques - such as the K-means and supervised algorithm, such as the LVQ (Learning Vector Quantization) family classifiers are used. The methodology starts with the seeking of the optimal number of prototypes from the unsu- pervised analysis of clusters and techniques clustering validation. Then, the prototypes that were found are used in the supervised training of various classifiers of the LVQ family. The influence that each type of clustering validation criterion exerts on the various LVQ classifiers implemented is deeply evaluated. In particular, the GRLVQ (Generalized Relevance Learning Vector Quantization) classifier obtained the best results where it presented a maximum classifica- tion rate of 98.3%, with the Dunn and Silhouette criteria standing out as the most efficient in determining the optimal quantity of prototypes.Os motores de indução trifásicos constituem-se em um dos equipamentos mais importantes da indústria moderna. Contudo, em muitas situações, tais equipamentos ficam submetidos a condições de uso inadequadas, tais como em ambientes com temperatura e umidade elevadas, variações bruscas de carga acima das especificadas, vibrações excessivas, dentre outras. Estas condições deixam os motores mais susceptíveis a falhas diversas, seja de natureza externa ou interna, que são obviamente indesejadas nos processos industriais. Neste contexto, a manutenção preditiva desempenha papel relevante, em que a detecção e o correto diagnóstico de falhas em tempo hábil leva ao aumento da vida útil do motor e, consequentemente, à diminuição de custos com parada da produção com manutenção corretiva. Diante destes fatores, nesta dissertação propõe-se uma metodologia de detecção de falhas por curto-circuito em motores de indução trifásicos que envolve algoritmos baseados em protótipos. Para este fim, são usadas tanto técnicas não supervisionadas - como o algoritmo K-médias - quanto supervisionadas, como os classificadores da família LVQ (Learning Vector Quantization). A metodologia inicia-se com a busca pelo número ótimo de protótipos a partir da análise não supervisionada de agrupamentos e de técnicas de validação de agrupamentos. Em seguida, os pro- tótipos assim encontrados são utilizados no treinamento supervisionado de vários classificadores da família LVQ. Avalia-se com profundidade a influência que cada tipo de critério de validação de agrupamentos exerce sobre os vários classificadores LVQ implementados. Em particular, o classificador GRLVQ (Generalized Relevance Learning Vector Quantization) obteve os melhores resultados ao apresentar taxas de acerto máximo de 98,3%, com os critérios Dunn e Silhueta destacando-se como os mais eficientes na determinação da quantidade ótima de protótipos.Cavalcante, Charles CasimiroBarreto, Guilherme de AlencarSousa, Diego Perdigão2020-02-07T13:21:14Z2020-02-07T13:21:14Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSOUSA, D. P. Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos. 2019. 148 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/49906porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-03-30T13:47:26Zoai:repositorio.ufc.br:riufc/49906Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:32:40.292088Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos
title Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos
spellingShingle Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos
Sousa, Diego Perdigão
Teleinformática
Motores
Localização de falhas (Engenharia)
Prototype-based learning
Three-phase induction motor
Failures detection
title_short Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos
title_full Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos
title_fullStr Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos
title_full_unstemmed Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos
title_sort Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos
author Sousa, Diego Perdigão
author_facet Sousa, Diego Perdigão
author_role author
dc.contributor.none.fl_str_mv Cavalcante, Charles Casimiro
Barreto, Guilherme de Alencar
dc.contributor.author.fl_str_mv Sousa, Diego Perdigão
dc.subject.por.fl_str_mv Teleinformática
Motores
Localização de falhas (Engenharia)
Prototype-based learning
Three-phase induction motor
Failures detection
topic Teleinformática
Motores
Localização de falhas (Engenharia)
Prototype-based learning
Three-phase induction motor
Failures detection
description Three-phase induction motors are one of the most important equipment of modern industry. However, in many situations, these equipment are subject to inappropriate conditions such as in environments with high temperatures and humidity, abrupt variations of load above specified, excessive vibrations, among others. These conditions make motors more susceptible to various failures, whether external or internal, which are obviously undesirable in industrial processes. In this context, the predictive maintenance plays a relevant role, where the detection and correct diagnosis of failures in a timely manner leads to increasing the useful life of the motor and, consequently, to the reduction of costs with production stoppage due to corrective maintenance. Considering these factors, this dissertation proposes a methodology for detecting short-circuit failures in three-phase induction motors, which involves prototypes-based algorithms. To this end, both unsupervised techniques - such as the K-means and supervised algorithm, such as the LVQ (Learning Vector Quantization) family classifiers are used. The methodology starts with the seeking of the optimal number of prototypes from the unsu- pervised analysis of clusters and techniques clustering validation. Then, the prototypes that were found are used in the supervised training of various classifiers of the LVQ family. The influence that each type of clustering validation criterion exerts on the various LVQ classifiers implemented is deeply evaluated. In particular, the GRLVQ (Generalized Relevance Learning Vector Quantization) classifier obtained the best results where it presented a maximum classifica- tion rate of 98.3%, with the Dunn and Silhouette criteria standing out as the most efficient in determining the optimal quantity of prototypes.
publishDate 2019
dc.date.none.fl_str_mv 2019
2020-02-07T13:21:14Z
2020-02-07T13:21:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUSA, D. P. Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos. 2019. 148 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.
http://www.repositorio.ufc.br/handle/riufc/49906
identifier_str_mv SOUSA, D. P. Detecção de falhas de curto-circuito em motores de indução trifásicos usando classificadores baseados em protótipos. 2019. 148 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.
url http://www.repositorio.ufc.br/handle/riufc/49906
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028848309108736