Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/18723 |
Resumo: | A popularidade de sistemas de múltiplos robôs tem impulsionado a pesquisa sobre interação colaborativa robô-robô: reconhecer as ações de outro robô é bastante útil em situações de cooperação e ao assistir manipuladores na realização de tarefas de apanhar e depositar objetos. Muito tem sido feito no estudo de rastreamento e detecção de mãos humanas para fins de interação. De forma análoga, tais fatores motivaram o desenvolvimento de um sistema de visão com o objetivo primordial de conferir a um dado robô certo nível de ciência a respeito do estado de outros robôs, sem conhecimento prévio das dinâmicas de suas juntas, por exemplo. É proposto um sistema de visão 3D baseado em modelos que tem como principais metas a detecção da garra de um manipulador robótico em uma cena, seu rastreamento à medida em que ela se move e a determinação contínua do seu estado (aberta ou fechada). Este sistema é composto fundamentalmente por um algoritmo de registro – uma combinação dos métodos de Sample Consensus Initial Alignment (SAC-IA) e Iterative Closest Point (ICP); um filtro de partícula para rastreio da garra do manipulador e um classificador de seu estado baseado numa medida de similaridade entre nuvens de pontos. Fundamentado sobre o Sistema Operacional de Robôs (ROS), combina métodos de processamento de nuvens de pontos aos algoritmos citados, enquanto faz uso dos modelos disponibilizados para identificar se a garra está aberta, fechada ou se está segurando um objeto. A plataforma de teste utilizada no projeto compõe-se de um braço robótico Kinova Jaco2 com 6-DOF e três dedos, além de um módulo de câmera RGB-D Microsoft Kinect. Em geral, os resultados experimentais se mostraram satisfatórios: o rastreamento apresentou boa performance para trajetórias comportadas e pôde-se detectar, sem erros, não só o estado da garra, demonstrando robustez a auto-oclusões, como também a presença de objetos. Uma das limitações observadas foi a baixa sensibilidade do rastreador a rotações da garra. Ainda, o uso de apenas dois modelos de referência também pode ser visto como uma limitação. Respeitadas as suposições e limitações do sistema, a detecção de objetos e da sua apreensão funcinonam bem. Vídeos demonstrativos foram disponibilizados online para melhor compreensão do funcionamento do sistema. Trabalhos posteriores podem explorar a generalização do detector para manipuladores similares, bem como contemplar a inserção deste sistema em um cenário colaborativo de robôs. |
id |
UFCG_415842ae758659a9e21579524b03335c |
---|---|
oai_identifier_str |
oai:localhost:riufcg/18723 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final.Tracking system of a robotic manipulator and detection of the status of its final operator.Sistema de rastreamentoManipulador robóticoRobóticaMúltiplos robôsSistemas de múltiplos robôsInteração colaborativa robô-robôSistema de visão 3D - robóticaAlgoritmo de registroSample Consensus Initial AlignmentIterative Closest PointSistema Operacional de RobôsBraço robóticoColaboração entre robôsParticle Filter AlgorithmRastreamento Baysiano não linearTracking systemRobotic manipulatorRoboticsMultiple robotsMultiple robot systemsRobot-robot collaborative interaction3D Vision System - RoboticsRegistration algorithmRobot Operating SystemRobotic armCollaboration between robotsNonlinear Baysian TrackingEngenharia Elétrica.A popularidade de sistemas de múltiplos robôs tem impulsionado a pesquisa sobre interação colaborativa robô-robô: reconhecer as ações de outro robô é bastante útil em situações de cooperação e ao assistir manipuladores na realização de tarefas de apanhar e depositar objetos. Muito tem sido feito no estudo de rastreamento e detecção de mãos humanas para fins de interação. De forma análoga, tais fatores motivaram o desenvolvimento de um sistema de visão com o objetivo primordial de conferir a um dado robô certo nível de ciência a respeito do estado de outros robôs, sem conhecimento prévio das dinâmicas de suas juntas, por exemplo. É proposto um sistema de visão 3D baseado em modelos que tem como principais metas a detecção da garra de um manipulador robótico em uma cena, seu rastreamento à medida em que ela se move e a determinação contínua do seu estado (aberta ou fechada). Este sistema é composto fundamentalmente por um algoritmo de registro – uma combinação dos métodos de Sample Consensus Initial Alignment (SAC-IA) e Iterative Closest Point (ICP); um filtro de partícula para rastreio da garra do manipulador e um classificador de seu estado baseado numa medida de similaridade entre nuvens de pontos. Fundamentado sobre o Sistema Operacional de Robôs (ROS), combina métodos de processamento de nuvens de pontos aos algoritmos citados, enquanto faz uso dos modelos disponibilizados para identificar se a garra está aberta, fechada ou se está segurando um objeto. A plataforma de teste utilizada no projeto compõe-se de um braço robótico Kinova Jaco2 com 6-DOF e três dedos, além de um módulo de câmera RGB-D Microsoft Kinect. Em geral, os resultados experimentais se mostraram satisfatórios: o rastreamento apresentou boa performance para trajetórias comportadas e pôde-se detectar, sem erros, não só o estado da garra, demonstrando robustez a auto-oclusões, como também a presença de objetos. Uma das limitações observadas foi a baixa sensibilidade do rastreador a rotações da garra. Ainda, o uso de apenas dois modelos de referência também pode ser visto como uma limitação. Respeitadas as suposições e limitações do sistema, a detecção de objetos e da sua apreensão funcinonam bem. Vídeos demonstrativos foram disponibilizados online para melhor compreensão do funcionamento do sistema. Trabalhos posteriores podem explorar a generalização do detector para manipuladores similares, bem como contemplar a inserção deste sistema em um cenário colaborativo de robôs.The popularity of multi robot systems has propelled research on collaborative robot-robot interaction: recognizing other robot’s actions is very useful in cooperation and for assisting single robots in stable pick and place tasks. Lots of work has been done in human hand tracking and recognition for interaction. Analogously, those factors motivated the development of a vision system with the prime goal of providing a robot with awareness about others robots’ states, without knowledge concerning their joints’ dynamics, for example. A 3D model-based is proposed, with the main goals of detecting a manipulator’s gripper on a scene, tracking it as it moves and continuously determine its state (opened or closed). The system comprises mainly of a registration pipeline – a combination of the Sample Consensus Initial Alignment (SAC-IA) and the Iterative Closest Point (ICP) algorithms; a particle filter used for tracking the gripper and a state classifier based on a measure of similarity between pointclouds. It runs under the Robot Operating System (ROS) and combines point cloud processing methods with the aforementioned algorithms, while using cloud models of the gripper to identify its state, i.e. whether it is opened or closed, as well as if it’s grasping an object. The system was implemented and evaluated with a test platform composed of a 6-DOF Kinova Jaco2 robotic arm, with a three-fingered gripper, and a Microsoft Kinect RGB-D (red, green and blue with per-pixel depth information) camera. In general, the experimental results were satisfactory: tracking had a good performance for well-behaved trajectories and the detection of not only the state of the gripper, which showed robustness to self-occlusions, but also the presence of an object, were successful. One of the observed limitations was the tracker’s low sensitivity to rotations of the gripper. Also, using only two reference models could as well be seen as a limitation. The system’s assumptions and limitations being respected, object detection would perform well, and also its grasping. Beyond the discussion of results, demonstration videos are available online for better understanding. Future works might explore generalization of the detector to similar manipulators, as well as contemplate the insertion of this system in a collaborative scenario.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIUFCGLIMA, Antonio Marcus Nogueira.LIMA, A. M. N.http://lattes.cnpq.br/2237395961717699SANTOS JÚNIOR, Gutemberg Gonçalves dos.ARAÚJO, Arthur Cruz de.2017-042021-05-12T18:16:18Z2021-05-122021-05-12T18:16:18Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/18723ARAÚJO, Arthur Cruz de. Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. 2017. 56f. (Trabalho de Conclusão de Curso - Monografia), Curso de Bacharelado em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2017. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/18723porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2021-05-12T18:17:02Zoai:localhost:riufcg/18723Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512021-05-12T18:17:02Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. Tracking system of a robotic manipulator and detection of the status of its final operator. |
title |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. |
spellingShingle |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. ARAÚJO, Arthur Cruz de. Sistema de rastreamento Manipulador robótico Robótica Múltiplos robôs Sistemas de múltiplos robôs Interação colaborativa robô-robô Sistema de visão 3D - robótica Algoritmo de registro Sample Consensus Initial Alignment Iterative Closest Point Sistema Operacional de Robôs Braço robótico Colaboração entre robôs Particle Filter Algorithm Rastreamento Baysiano não linear Tracking system Robotic manipulator Robotics Multiple robots Multiple robot systems Robot-robot collaborative interaction 3D Vision System - Robotics Registration algorithm Robot Operating System Robotic arm Collaboration between robots Nonlinear Baysian Tracking Engenharia Elétrica. |
title_short |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. |
title_full |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. |
title_fullStr |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. |
title_full_unstemmed |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. |
title_sort |
Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. |
author |
ARAÚJO, Arthur Cruz de. |
author_facet |
ARAÚJO, Arthur Cruz de. |
author_role |
author |
dc.contributor.none.fl_str_mv |
LIMA, Antonio Marcus Nogueira. LIMA, A. M. N. http://lattes.cnpq.br/2237395961717699 SANTOS JÚNIOR, Gutemberg Gonçalves dos. |
dc.contributor.author.fl_str_mv |
ARAÚJO, Arthur Cruz de. |
dc.subject.por.fl_str_mv |
Sistema de rastreamento Manipulador robótico Robótica Múltiplos robôs Sistemas de múltiplos robôs Interação colaborativa robô-robô Sistema de visão 3D - robótica Algoritmo de registro Sample Consensus Initial Alignment Iterative Closest Point Sistema Operacional de Robôs Braço robótico Colaboração entre robôs Particle Filter Algorithm Rastreamento Baysiano não linear Tracking system Robotic manipulator Robotics Multiple robots Multiple robot systems Robot-robot collaborative interaction 3D Vision System - Robotics Registration algorithm Robot Operating System Robotic arm Collaboration between robots Nonlinear Baysian Tracking Engenharia Elétrica. |
topic |
Sistema de rastreamento Manipulador robótico Robótica Múltiplos robôs Sistemas de múltiplos robôs Interação colaborativa robô-robô Sistema de visão 3D - robótica Algoritmo de registro Sample Consensus Initial Alignment Iterative Closest Point Sistema Operacional de Robôs Braço robótico Colaboração entre robôs Particle Filter Algorithm Rastreamento Baysiano não linear Tracking system Robotic manipulator Robotics Multiple robots Multiple robot systems Robot-robot collaborative interaction 3D Vision System - Robotics Registration algorithm Robot Operating System Robotic arm Collaboration between robots Nonlinear Baysian Tracking Engenharia Elétrica. |
description |
A popularidade de sistemas de múltiplos robôs tem impulsionado a pesquisa sobre interação colaborativa robô-robô: reconhecer as ações de outro robô é bastante útil em situações de cooperação e ao assistir manipuladores na realização de tarefas de apanhar e depositar objetos. Muito tem sido feito no estudo de rastreamento e detecção de mãos humanas para fins de interação. De forma análoga, tais fatores motivaram o desenvolvimento de um sistema de visão com o objetivo primordial de conferir a um dado robô certo nível de ciência a respeito do estado de outros robôs, sem conhecimento prévio das dinâmicas de suas juntas, por exemplo. É proposto um sistema de visão 3D baseado em modelos que tem como principais metas a detecção da garra de um manipulador robótico em uma cena, seu rastreamento à medida em que ela se move e a determinação contínua do seu estado (aberta ou fechada). Este sistema é composto fundamentalmente por um algoritmo de registro – uma combinação dos métodos de Sample Consensus Initial Alignment (SAC-IA) e Iterative Closest Point (ICP); um filtro de partícula para rastreio da garra do manipulador e um classificador de seu estado baseado numa medida de similaridade entre nuvens de pontos. Fundamentado sobre o Sistema Operacional de Robôs (ROS), combina métodos de processamento de nuvens de pontos aos algoritmos citados, enquanto faz uso dos modelos disponibilizados para identificar se a garra está aberta, fechada ou se está segurando um objeto. A plataforma de teste utilizada no projeto compõe-se de um braço robótico Kinova Jaco2 com 6-DOF e três dedos, além de um módulo de câmera RGB-D Microsoft Kinect. Em geral, os resultados experimentais se mostraram satisfatórios: o rastreamento apresentou boa performance para trajetórias comportadas e pôde-se detectar, sem erros, não só o estado da garra, demonstrando robustez a auto-oclusões, como também a presença de objetos. Uma das limitações observadas foi a baixa sensibilidade do rastreador a rotações da garra. Ainda, o uso de apenas dois modelos de referência também pode ser visto como uma limitação. Respeitadas as suposições e limitações do sistema, a detecção de objetos e da sua apreensão funcinonam bem. Vídeos demonstrativos foram disponibilizados online para melhor compreensão do funcionamento do sistema. Trabalhos posteriores podem explorar a generalização do detector para manipuladores similares, bem como contemplar a inserção deste sistema em um cenário colaborativo de robôs. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 2021-05-12T18:16:18Z 2021-05-12 2021-05-12T18:16:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/18723 ARAÚJO, Arthur Cruz de. Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. 2017. 56f. (Trabalho de Conclusão de Curso - Monografia), Curso de Bacharelado em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2017. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/18723 |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/18723 |
identifier_str_mv |
ARAÚJO, Arthur Cruz de. Sistema de rastreamento de um manipulador robótico e detecção do estado de seu efetuador final. 2017. 56f. (Trabalho de Conclusão de Curso - Monografia), Curso de Bacharelado em Engenharia Elétrica, Centro de Engenharia Elétrica e Informática , Universidade Federal de Campina Grande – Paraíba - Brasil, 2017. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/18723 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744490222583808 |