Recomendação de artigos científicos: um foco na integração de perfis de usuários.

Detalhes bibliográficos
Autor(a) principal: MAGALHÃES, Jônathas José de.
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFCG
Texto Completo: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083
Resumo: Os Sistemas de Recomendação personalizada surgiram como uma possível solução para o problema da sobrecarga de informação. Entretanto, sua qualidade está relacionada ao perfil de usuário e gerar um perfil de qualidade não é uma tarefa trivial. Consequentemente, o usuário que não recebe boas recomendações poderá perder o interesse e confiança no sistema. A pesquisa ora apresentada trata deste problema propondo uma abordagempara Sistemas de Recomendação de artigos científicos com foco na integração de perfis de usuário. Os perfis foram construídos a partir de três fontes: CV Lattes, Mendeley e LinkedIn. A integração de perfis de usuário foi realizada por meio de combinação linear, propondo-se três estratégias: (i) importância igual (Igual); (ii) quantidade de itens (Quant); e (iii) atividade do usuário na fonte (Ativ). Para validar os modelos de perfis, foi realizado umexperimento emque os participantes analisaram a relevância de 50 artigos, sendo utilizada a métrica NDCG@5. Foram realizadas duas avaliações, a primeira apenas no Lattes, utilizando como fator a estratégia de construção de perfil, tendo sido avaliadas as seguintes estratégias: termos (LT); conceitos (LC) e estratégia deLopes. As estratégias propostas proporcionaram os melhores resultados, conforme o teste de Wilcox (α = 0,05): Hipótese Alternativa (HA) = LT > Lopes (p-valor = 0,01543) e HA = LC > Lopes (p-valor = 0,04292). Na segunda avaliação, com os perfis integrados, foram utilizados dois fatores: representação do perfil (termos e conceitos) e estratégia de integração (Igual; Quant; Ativ). Os perfis integrados não proporcionaram resultados melhores que os perfis não integrados, conforme o teste de Friedman (α = 0,05): HA = Existe diferença (p-valor = 0,9971). De posse dos resultados, pôde-se concluir que o modelo proporcionou resultados satisfatórios na plataforma Lattes, o que pode ser caracterizado como uma contribuição importante, dada a importância desta plataforma para os pesquisadores brasileiros. Em se tratando da integração de perfis, não foram alcançados os resultados esperados. Neste sentido, verifica-se que o modelo de integração precisa ser investigado com mais aprofundamento, seja realizando um experimento com mais fatores ou buscando uma amostra maior de usuários.
id UFCG_6a9d288ba43e111675b6aeab6160353d
oai_identifier_str oai:localhost:riufcg/7083
network_acronym_str UFCG
network_name_str Biblioteca Digital de Teses e Dissertações da UFCG
repository_id_str 4851
spelling Recomendação de artigos científicos: um foco na integração de perfis de usuários.Recommendation of scientific articles: a focus on the integration of user profiles.Sistemas de RecomendaçãoModelagem de UsuárioSistema de Recomendação de ArtigosIntegração de Perfis de UsuárioFiltragem Baseada em ConteúdoPlataforma LattesMendeleyLinkedInRecommendation SystemsUser ModelingArticle Recommendation SystemArticle Recommendation SystemIntegration of User ProfilesContent-Based FilteringLattes PlatformCiência da ComputaçãoOs Sistemas de Recomendação personalizada surgiram como uma possível solução para o problema da sobrecarga de informação. Entretanto, sua qualidade está relacionada ao perfil de usuário e gerar um perfil de qualidade não é uma tarefa trivial. Consequentemente, o usuário que não recebe boas recomendações poderá perder o interesse e confiança no sistema. A pesquisa ora apresentada trata deste problema propondo uma abordagempara Sistemas de Recomendação de artigos científicos com foco na integração de perfis de usuário. Os perfis foram construídos a partir de três fontes: CV Lattes, Mendeley e LinkedIn. A integração de perfis de usuário foi realizada por meio de combinação linear, propondo-se três estratégias: (i) importância igual (Igual); (ii) quantidade de itens (Quant); e (iii) atividade do usuário na fonte (Ativ). Para validar os modelos de perfis, foi realizado umexperimento emque os participantes analisaram a relevância de 50 artigos, sendo utilizada a métrica NDCG@5. Foram realizadas duas avaliações, a primeira apenas no Lattes, utilizando como fator a estratégia de construção de perfil, tendo sido avaliadas as seguintes estratégias: termos (LT); conceitos (LC) e estratégia deLopes. As estratégias propostas proporcionaram os melhores resultados, conforme o teste de Wilcox (α = 0,05): Hipótese Alternativa (HA) = LT > Lopes (p-valor = 0,01543) e HA = LC > Lopes (p-valor = 0,04292). Na segunda avaliação, com os perfis integrados, foram utilizados dois fatores: representação do perfil (termos e conceitos) e estratégia de integração (Igual; Quant; Ativ). Os perfis integrados não proporcionaram resultados melhores que os perfis não integrados, conforme o teste de Friedman (α = 0,05): HA = Existe diferença (p-valor = 0,9971). De posse dos resultados, pôde-se concluir que o modelo proporcionou resultados satisfatórios na plataforma Lattes, o que pode ser caracterizado como uma contribuição importante, dada a importância desta plataforma para os pesquisadores brasileiros. Em se tratando da integração de perfis, não foram alcançados os resultados esperados. Neste sentido, verifica-se que o modelo de integração precisa ser investigado com mais aprofundamento, seja realizando um experimento com mais fatores ou buscando uma amostra maior de usuários.The personalized Recommender Systems have emerged as a possible solution to the information overload problem. However, their quality is related to the user profile and generate a profile with quality is not a trivial task. Consequently, the user that does not receive good recommendations may lose interest and confidence in the system. Our research presented here addresses this problem by proposing an approach to paper Recommendation Systems focusing on the integration of user profiles. The profiles were constructed fromthree sources: CV Lattes, Mendeley and LinkedIn. The integration of user profiles was performed by linear combination and we proposed three strategies: (i) equal importance (Igual); (ii) quantity of items (Quant); and (iii) user activity on the source (Ativ). To validate the profile models, we performed an experiment in which the participants evaluated the relevance of 50 papers, we used the metric NDCG@5. We performed two evaluations, the first only in Lattes, we used the strategy of building profile as a factor and evaluated the following strategies: terms (LT); concepts (LC) and Lopes strategy. The proposed strategies provided the best results, according to the Wilcox’s test (α = 0.05): Alternative Hypothesis (HA) = LT > Lopes (p-value = 0.01543) and HA = LC > Lopes (p-value = 0.04292). In the second evaluation, with the integrated profiles, we used two factors: profile representation (terms and concepts) and integration strategy (Igual; Quant; Ativ). The integrated profiles did not provide better results than non-integrated profiles, according to the Friedman’s test (α = 0.05): HA = There is difference (p-value = 0.9971). Based on the results, we can conclude that themodel provided satisfactory results in the Lattes platform, which can be characterized as an important contribution, given the importance of this platform for Brazilian researchers. Concerning the profiles integration, we did not achieved the expected results. In this sense, we verify that the integration model needs further investigation, whether conducting an experiment with more factors or with a larger sample of users.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGCOSTA, Evandro de Barros.COSTA, E. B.http://lattes.cnpq.br/5760364940162939ANDRADE, Nazareno Ferreira de.DIAS, Guilherme Ataíde.MAGALHÃES, Jônathas José de.2013-092019-09-18T11:02:14Z2019-09-182019-09-18T11:02:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083MAGALHÃES, Jônathas José de. Recomendação de artigos científicos: um foco na integração de perfis de usuários. 2013. 78f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2013. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-03-21T20:13:22Zoai:localhost:riufcg/7083Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-03-21T20:13:22Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Recomendação de artigos científicos: um foco na integração de perfis de usuários.
Recommendation of scientific articles: a focus on the integration of user profiles.
title Recomendação de artigos científicos: um foco na integração de perfis de usuários.
spellingShingle Recomendação de artigos científicos: um foco na integração de perfis de usuários.
MAGALHÃES, Jônathas José de.
Sistemas de Recomendação
Modelagem de Usuário
Sistema de Recomendação de Artigos
Integração de Perfis de Usuário
Filtragem Baseada em Conteúdo
Plataforma Lattes
Mendeley
LinkedIn
Recommendation Systems
User Modeling
Article Recommendation System
Article Recommendation System
Integration of User Profiles
Content-Based Filtering
Lattes Platform
Ciência da Computação
title_short Recomendação de artigos científicos: um foco na integração de perfis de usuários.
title_full Recomendação de artigos científicos: um foco na integração de perfis de usuários.
title_fullStr Recomendação de artigos científicos: um foco na integração de perfis de usuários.
title_full_unstemmed Recomendação de artigos científicos: um foco na integração de perfis de usuários.
title_sort Recomendação de artigos científicos: um foco na integração de perfis de usuários.
author MAGALHÃES, Jônathas José de.
author_facet MAGALHÃES, Jônathas José de.
author_role author
dc.contributor.none.fl_str_mv COSTA, Evandro de Barros.
COSTA, E. B.
http://lattes.cnpq.br/5760364940162939
ANDRADE, Nazareno Ferreira de.
DIAS, Guilherme Ataíde.
dc.contributor.author.fl_str_mv MAGALHÃES, Jônathas José de.
dc.subject.por.fl_str_mv Sistemas de Recomendação
Modelagem de Usuário
Sistema de Recomendação de Artigos
Integração de Perfis de Usuário
Filtragem Baseada em Conteúdo
Plataforma Lattes
Mendeley
LinkedIn
Recommendation Systems
User Modeling
Article Recommendation System
Article Recommendation System
Integration of User Profiles
Content-Based Filtering
Lattes Platform
Ciência da Computação
topic Sistemas de Recomendação
Modelagem de Usuário
Sistema de Recomendação de Artigos
Integração de Perfis de Usuário
Filtragem Baseada em Conteúdo
Plataforma Lattes
Mendeley
LinkedIn
Recommendation Systems
User Modeling
Article Recommendation System
Article Recommendation System
Integration of User Profiles
Content-Based Filtering
Lattes Platform
Ciência da Computação
description Os Sistemas de Recomendação personalizada surgiram como uma possível solução para o problema da sobrecarga de informação. Entretanto, sua qualidade está relacionada ao perfil de usuário e gerar um perfil de qualidade não é uma tarefa trivial. Consequentemente, o usuário que não recebe boas recomendações poderá perder o interesse e confiança no sistema. A pesquisa ora apresentada trata deste problema propondo uma abordagempara Sistemas de Recomendação de artigos científicos com foco na integração de perfis de usuário. Os perfis foram construídos a partir de três fontes: CV Lattes, Mendeley e LinkedIn. A integração de perfis de usuário foi realizada por meio de combinação linear, propondo-se três estratégias: (i) importância igual (Igual); (ii) quantidade de itens (Quant); e (iii) atividade do usuário na fonte (Ativ). Para validar os modelos de perfis, foi realizado umexperimento emque os participantes analisaram a relevância de 50 artigos, sendo utilizada a métrica NDCG@5. Foram realizadas duas avaliações, a primeira apenas no Lattes, utilizando como fator a estratégia de construção de perfil, tendo sido avaliadas as seguintes estratégias: termos (LT); conceitos (LC) e estratégia deLopes. As estratégias propostas proporcionaram os melhores resultados, conforme o teste de Wilcox (α = 0,05): Hipótese Alternativa (HA) = LT > Lopes (p-valor = 0,01543) e HA = LC > Lopes (p-valor = 0,04292). Na segunda avaliação, com os perfis integrados, foram utilizados dois fatores: representação do perfil (termos e conceitos) e estratégia de integração (Igual; Quant; Ativ). Os perfis integrados não proporcionaram resultados melhores que os perfis não integrados, conforme o teste de Friedman (α = 0,05): HA = Existe diferença (p-valor = 0,9971). De posse dos resultados, pôde-se concluir que o modelo proporcionou resultados satisfatórios na plataforma Lattes, o que pode ser caracterizado como uma contribuição importante, dada a importância desta plataforma para os pesquisadores brasileiros. Em se tratando da integração de perfis, não foram alcançados os resultados esperados. Neste sentido, verifica-se que o modelo de integração precisa ser investigado com mais aprofundamento, seja realizando um experimento com mais fatores ou buscando uma amostra maior de usuários.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
2019-09-18T11:02:14Z
2019-09-18
2019-09-18T11:02:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083
MAGALHÃES, Jônathas José de. Recomendação de artigos científicos: um foco na integração de perfis de usuários. 2013. 78f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2013. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083
url http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083
identifier_str_mv MAGALHÃES, Jônathas José de. Recomendação de artigos científicos: um foco na integração de perfis de usuários. 2013. 78f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2013. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
publisher.none.fl_str_mv Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFCG
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Biblioteca Digital de Teses e Dissertações da UFCG
collection Biblioteca Digital de Teses e Dissertações da UFCG
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br
_version_ 1809744394894442496