Recomendação de artigos científicos: um foco na integração de perfis de usuários.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFCG |
Texto Completo: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083 |
Resumo: | Os Sistemas de Recomendação personalizada surgiram como uma possível solução para o problema da sobrecarga de informação. Entretanto, sua qualidade está relacionada ao perfil de usuário e gerar um perfil de qualidade não é uma tarefa trivial. Consequentemente, o usuário que não recebe boas recomendações poderá perder o interesse e confiança no sistema. A pesquisa ora apresentada trata deste problema propondo uma abordagempara Sistemas de Recomendação de artigos científicos com foco na integração de perfis de usuário. Os perfis foram construídos a partir de três fontes: CV Lattes, Mendeley e LinkedIn. A integração de perfis de usuário foi realizada por meio de combinação linear, propondo-se três estratégias: (i) importância igual (Igual); (ii) quantidade de itens (Quant); e (iii) atividade do usuário na fonte (Ativ). Para validar os modelos de perfis, foi realizado umexperimento emque os participantes analisaram a relevância de 50 artigos, sendo utilizada a métrica NDCG@5. Foram realizadas duas avaliações, a primeira apenas no Lattes, utilizando como fator a estratégia de construção de perfil, tendo sido avaliadas as seguintes estratégias: termos (LT); conceitos (LC) e estratégia deLopes. As estratégias propostas proporcionaram os melhores resultados, conforme o teste de Wilcox (α = 0,05): Hipótese Alternativa (HA) = LT > Lopes (p-valor = 0,01543) e HA = LC > Lopes (p-valor = 0,04292). Na segunda avaliação, com os perfis integrados, foram utilizados dois fatores: representação do perfil (termos e conceitos) e estratégia de integração (Igual; Quant; Ativ). Os perfis integrados não proporcionaram resultados melhores que os perfis não integrados, conforme o teste de Friedman (α = 0,05): HA = Existe diferença (p-valor = 0,9971). De posse dos resultados, pôde-se concluir que o modelo proporcionou resultados satisfatórios na plataforma Lattes, o que pode ser caracterizado como uma contribuição importante, dada a importância desta plataforma para os pesquisadores brasileiros. Em se tratando da integração de perfis, não foram alcançados os resultados esperados. Neste sentido, verifica-se que o modelo de integração precisa ser investigado com mais aprofundamento, seja realizando um experimento com mais fatores ou buscando uma amostra maior de usuários. |
id |
UFCG_6a9d288ba43e111675b6aeab6160353d |
---|---|
oai_identifier_str |
oai:localhost:riufcg/7083 |
network_acronym_str |
UFCG |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository_id_str |
4851 |
spelling |
Recomendação de artigos científicos: um foco na integração de perfis de usuários.Recommendation of scientific articles: a focus on the integration of user profiles.Sistemas de RecomendaçãoModelagem de UsuárioSistema de Recomendação de ArtigosIntegração de Perfis de UsuárioFiltragem Baseada em ConteúdoPlataforma LattesMendeleyLinkedInRecommendation SystemsUser ModelingArticle Recommendation SystemArticle Recommendation SystemIntegration of User ProfilesContent-Based FilteringLattes PlatformCiência da ComputaçãoOs Sistemas de Recomendação personalizada surgiram como uma possível solução para o problema da sobrecarga de informação. Entretanto, sua qualidade está relacionada ao perfil de usuário e gerar um perfil de qualidade não é uma tarefa trivial. Consequentemente, o usuário que não recebe boas recomendações poderá perder o interesse e confiança no sistema. A pesquisa ora apresentada trata deste problema propondo uma abordagempara Sistemas de Recomendação de artigos científicos com foco na integração de perfis de usuário. Os perfis foram construídos a partir de três fontes: CV Lattes, Mendeley e LinkedIn. A integração de perfis de usuário foi realizada por meio de combinação linear, propondo-se três estratégias: (i) importância igual (Igual); (ii) quantidade de itens (Quant); e (iii) atividade do usuário na fonte (Ativ). Para validar os modelos de perfis, foi realizado umexperimento emque os participantes analisaram a relevância de 50 artigos, sendo utilizada a métrica NDCG@5. Foram realizadas duas avaliações, a primeira apenas no Lattes, utilizando como fator a estratégia de construção de perfil, tendo sido avaliadas as seguintes estratégias: termos (LT); conceitos (LC) e estratégia deLopes. As estratégias propostas proporcionaram os melhores resultados, conforme o teste de Wilcox (α = 0,05): Hipótese Alternativa (HA) = LT > Lopes (p-valor = 0,01543) e HA = LC > Lopes (p-valor = 0,04292). Na segunda avaliação, com os perfis integrados, foram utilizados dois fatores: representação do perfil (termos e conceitos) e estratégia de integração (Igual; Quant; Ativ). Os perfis integrados não proporcionaram resultados melhores que os perfis não integrados, conforme o teste de Friedman (α = 0,05): HA = Existe diferença (p-valor = 0,9971). De posse dos resultados, pôde-se concluir que o modelo proporcionou resultados satisfatórios na plataforma Lattes, o que pode ser caracterizado como uma contribuição importante, dada a importância desta plataforma para os pesquisadores brasileiros. Em se tratando da integração de perfis, não foram alcançados os resultados esperados. Neste sentido, verifica-se que o modelo de integração precisa ser investigado com mais aprofundamento, seja realizando um experimento com mais fatores ou buscando uma amostra maior de usuários.The personalized Recommender Systems have emerged as a possible solution to the information overload problem. However, their quality is related to the user profile and generate a profile with quality is not a trivial task. Consequently, the user that does not receive good recommendations may lose interest and confidence in the system. Our research presented here addresses this problem by proposing an approach to paper Recommendation Systems focusing on the integration of user profiles. The profiles were constructed fromthree sources: CV Lattes, Mendeley and LinkedIn. The integration of user profiles was performed by linear combination and we proposed three strategies: (i) equal importance (Igual); (ii) quantity of items (Quant); and (iii) user activity on the source (Ativ). To validate the profile models, we performed an experiment in which the participants evaluated the relevance of 50 papers, we used the metric NDCG@5. We performed two evaluations, the first only in Lattes, we used the strategy of building profile as a factor and evaluated the following strategies: terms (LT); concepts (LC) and Lopes strategy. The proposed strategies provided the best results, according to the Wilcox’s test (α = 0.05): Alternative Hypothesis (HA) = LT > Lopes (p-value = 0.01543) and HA = LC > Lopes (p-value = 0.04292). In the second evaluation, with the integrated profiles, we used two factors: profile representation (terms and concepts) and integration strategy (Igual; Quant; Ativ). The integrated profiles did not provide better results than non-integrated profiles, according to the Friedman’s test (α = 0.05): HA = There is difference (p-value = 0.9971). Based on the results, we can conclude that themodel provided satisfactory results in the Lattes platform, which can be characterized as an important contribution, given the importance of this platform for Brazilian researchers. Concerning the profiles integration, we did not achieved the expected results. In this sense, we verify that the integration model needs further investigation, whether conducting an experiment with more factors or with a larger sample of users.Universidade Federal de Campina GrandeBrasilCentro de Engenharia Elétrica e Informática - CEEIPÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃOUFCGCOSTA, Evandro de Barros.COSTA, E. B.http://lattes.cnpq.br/5760364940162939ANDRADE, Nazareno Ferreira de.DIAS, Guilherme Ataíde.MAGALHÃES, Jônathas José de.2013-092019-09-18T11:02:14Z2019-09-182019-09-18T11:02:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083MAGALHÃES, Jônathas José de. Recomendação de artigos científicos: um foco na integração de perfis de usuários. 2013. 78f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2013. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFCGinstname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG2022-03-21T20:13:22Zoai:localhost:riufcg/7083Biblioteca Digital de Teses e Dissertaçõeshttp://bdtd.ufcg.edu.br/PUBhttp://dspace.sti.ufcg.edu.br:8080/oai/requestbdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.bropendoar:48512022-03-21T20:13:22Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Recomendação de artigos científicos: um foco na integração de perfis de usuários. Recommendation of scientific articles: a focus on the integration of user profiles. |
title |
Recomendação de artigos científicos: um foco na integração de perfis de usuários. |
spellingShingle |
Recomendação de artigos científicos: um foco na integração de perfis de usuários. MAGALHÃES, Jônathas José de. Sistemas de Recomendação Modelagem de Usuário Sistema de Recomendação de Artigos Integração de Perfis de Usuário Filtragem Baseada em Conteúdo Plataforma Lattes Mendeley Recommendation Systems User Modeling Article Recommendation System Article Recommendation System Integration of User Profiles Content-Based Filtering Lattes Platform Ciência da Computação |
title_short |
Recomendação de artigos científicos: um foco na integração de perfis de usuários. |
title_full |
Recomendação de artigos científicos: um foco na integração de perfis de usuários. |
title_fullStr |
Recomendação de artigos científicos: um foco na integração de perfis de usuários. |
title_full_unstemmed |
Recomendação de artigos científicos: um foco na integração de perfis de usuários. |
title_sort |
Recomendação de artigos científicos: um foco na integração de perfis de usuários. |
author |
MAGALHÃES, Jônathas José de. |
author_facet |
MAGALHÃES, Jônathas José de. |
author_role |
author |
dc.contributor.none.fl_str_mv |
COSTA, Evandro de Barros. COSTA, E. B. http://lattes.cnpq.br/5760364940162939 ANDRADE, Nazareno Ferreira de. DIAS, Guilherme Ataíde. |
dc.contributor.author.fl_str_mv |
MAGALHÃES, Jônathas José de. |
dc.subject.por.fl_str_mv |
Sistemas de Recomendação Modelagem de Usuário Sistema de Recomendação de Artigos Integração de Perfis de Usuário Filtragem Baseada em Conteúdo Plataforma Lattes Mendeley Recommendation Systems User Modeling Article Recommendation System Article Recommendation System Integration of User Profiles Content-Based Filtering Lattes Platform Ciência da Computação |
topic |
Sistemas de Recomendação Modelagem de Usuário Sistema de Recomendação de Artigos Integração de Perfis de Usuário Filtragem Baseada em Conteúdo Plataforma Lattes Mendeley Recommendation Systems User Modeling Article Recommendation System Article Recommendation System Integration of User Profiles Content-Based Filtering Lattes Platform Ciência da Computação |
description |
Os Sistemas de Recomendação personalizada surgiram como uma possível solução para o problema da sobrecarga de informação. Entretanto, sua qualidade está relacionada ao perfil de usuário e gerar um perfil de qualidade não é uma tarefa trivial. Consequentemente, o usuário que não recebe boas recomendações poderá perder o interesse e confiança no sistema. A pesquisa ora apresentada trata deste problema propondo uma abordagempara Sistemas de Recomendação de artigos científicos com foco na integração de perfis de usuário. Os perfis foram construídos a partir de três fontes: CV Lattes, Mendeley e LinkedIn. A integração de perfis de usuário foi realizada por meio de combinação linear, propondo-se três estratégias: (i) importância igual (Igual); (ii) quantidade de itens (Quant); e (iii) atividade do usuário na fonte (Ativ). Para validar os modelos de perfis, foi realizado umexperimento emque os participantes analisaram a relevância de 50 artigos, sendo utilizada a métrica NDCG@5. Foram realizadas duas avaliações, a primeira apenas no Lattes, utilizando como fator a estratégia de construção de perfil, tendo sido avaliadas as seguintes estratégias: termos (LT); conceitos (LC) e estratégia deLopes. As estratégias propostas proporcionaram os melhores resultados, conforme o teste de Wilcox (α = 0,05): Hipótese Alternativa (HA) = LT > Lopes (p-valor = 0,01543) e HA = LC > Lopes (p-valor = 0,04292). Na segunda avaliação, com os perfis integrados, foram utilizados dois fatores: representação do perfil (termos e conceitos) e estratégia de integração (Igual; Quant; Ativ). Os perfis integrados não proporcionaram resultados melhores que os perfis não integrados, conforme o teste de Friedman (α = 0,05): HA = Existe diferença (p-valor = 0,9971). De posse dos resultados, pôde-se concluir que o modelo proporcionou resultados satisfatórios na plataforma Lattes, o que pode ser caracterizado como uma contribuição importante, dada a importância desta plataforma para os pesquisadores brasileiros. Em se tratando da integração de perfis, não foram alcançados os resultados esperados. Neste sentido, verifica-se que o modelo de integração precisa ser investigado com mais aprofundamento, seja realizando um experimento com mais fatores ou buscando uma amostra maior de usuários. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 2019-09-18T11:02:14Z 2019-09-18 2019-09-18T11:02:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083 MAGALHÃES, Jônathas José de. Recomendação de artigos científicos: um foco na integração de perfis de usuários. 2013. 78f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2013. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083 |
url |
http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083 |
identifier_str_mv |
MAGALHÃES, Jônathas José de. Recomendação de artigos científicos: um foco na integração de perfis de usuários. 2013. 78f. (Dissertação) Mestrado em Ciência da Computação, Programa de Pós-Graduação em Ciência da Computação, Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande - Campina Grande - Paraíba - Brasil, 2013. Disponível em: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/7083 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFCG instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFCG |
collection |
Biblioteca Digital de Teses e Dissertações da UFCG |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFCG - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
bdtd@setor.ufcg.edu.br || bdtd@setor.ufcg.edu.br |
_version_ |
1809744394894442496 |