Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter

Detalhes bibliográficos
Autor(a) principal: Ãtila GirÃo de Oliveira
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285
Resumo: This dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches.
id UFC_184d77270192d96ef278abf463736dfd
oai_identifier_str oai:www.teses.ufc.br:8405
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisNeural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter Classificadores neurais aplicados na detecÃÃo de curto-circuito entre espiras estatÃricas em motores de induÃÃo trifÃsicos acionados por conversores de frequÃncia2014-05-23Ricardo Silva Thà Pontes09189599349http://lattes.cnpq.br/1674775796751929Guilherme de Alencar Barreto32841450368http://lattes.cnpq.br/8902002461422112Clayton Ricarte da Silva11587946300http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4706950D6ClÃudio Marques de Sà Medeiros02545216587MEDEIROS, C. M. S.Arthur PlÃnio de Souza Braga42395194387http://lattes.cnpq.br/1473823107869382 02931953318Ãtila GirÃo de OliveiraUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia ElÃtricaUFCBRCurto circuito entre espiras Motor de InduÃÃo TrifÃsicoWinding interturn short-circuit Three Phase Induction Motor Multilayer Perceptron. ENGENHARIA ELETRICAThis dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches. Este trabalho deriva da aplicaÃÃo de redes neurais artificiais para a detecÃÃo de curto-circuito entre espiras em motor de induÃÃo trifÃsico, acionado por inversor de frequÃncia. As redes neurais artificiais, do tipo Perceptron Simples e Multicamadas, sÃo usadas para detectar falhas de curto-circuito no bobinamento estatÃrico de motores de induÃÃo trifÃsicos de forma off-line. Para treinamento do Perceptron Multicamadas sÃo usados dois algoritmos distintos: o error back-propagation, que figura como o algoritmo clÃssico na literatura especializada, e o extreme learning machine, que à uma alternativa, relativamente recente, ao algoritmo clÃssico. Este algoritmo à uma opÃÃo atraente para o desenvolvimento rÃpido de classificadores. O banco de dados usado para treinamento e validaÃÃo das redes à obtido a partir de experimentaÃÃo laboratorial, portanto composto de dados reais. Os atributos utilizados para a detecÃÃo da falha sÃo componentes de frequÃncia do espectro harmÃnico da corrente estatÃrica do motor. O critÃrio de escolha destas componentes, a priori, à fundamentado em resultados de investigaÃÃes prÃvias da assinatura de corrente e, em segunda instÃncia, à aplicada a tÃcnica de anÃlise de componentes principais. SÃo apresentados os resultados obtidospelos classificadores projetados, e feitas algumas consideraÃÃes quanto à utilizaÃÃo destes em aplicaÃÃo embarcada e em tempo real, que à a principal projeÃÃo de futuros trabalhos a partir do atual. CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:25:29Zmail@mail.com -
dc.title.en.fl_str_mv Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
dc.title.alternative.pt.fl_str_mv Classificadores neurais aplicados na detecÃÃo de curto-circuito entre espiras estatÃricas em motores de induÃÃo trifÃsicos acionados por conversores de frequÃncia
title Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
spellingShingle Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
Ãtila GirÃo de Oliveira
Curto circuito entre espiras
Motor de InduÃÃo TrifÃsico
Winding interturn short-circuit
Three Phase Induction Motor
Multilayer Perceptron.
ENGENHARIA ELETRICA
title_short Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
title_full Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
title_fullStr Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
title_full_unstemmed Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
title_sort Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
author Ãtila GirÃo de Oliveira
author_facet Ãtila GirÃo de Oliveira
author_role author
dc.contributor.advisor1.fl_str_mv Ricardo Silva Thà Pontes
dc.contributor.advisor1ID.fl_str_mv 09189599349
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1674775796751929
dc.contributor.referee1.fl_str_mv Guilherme de Alencar Barreto
dc.contributor.referee1ID.fl_str_mv 32841450368
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8902002461422112
dc.contributor.referee2.fl_str_mv Clayton Ricarte da Silva
dc.contributor.referee2ID.fl_str_mv 11587946300
dc.contributor.referee2Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4706950D6
dc.contributor.referee3.fl_str_mv ClÃudio Marques de SÃ Medeiros
dc.contributor.referee3ID.fl_str_mv 02545216587
dc.contributor.referee3Lattes.fl_str_mv MEDEIROS, C. M. S.
dc.contributor.referee4.fl_str_mv Arthur PlÃnio de Souza Braga
dc.contributor.referee4ID.fl_str_mv 42395194387
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/1473823107869382
dc.contributor.authorID.fl_str_mv 02931953318
dc.contributor.author.fl_str_mv Ãtila GirÃo de Oliveira
contributor_str_mv Ricardo Silva Thà Pontes
Guilherme de Alencar Barreto
Clayton Ricarte da Silva
ClÃudio Marques de SÃ Medeiros
Arthur PlÃnio de Souza Braga
dc.subject.por.fl_str_mv Curto circuito entre espiras
Motor de InduÃÃo TrifÃsico
topic Curto circuito entre espiras
Motor de InduÃÃo TrifÃsico
Winding interturn short-circuit
Three Phase Induction Motor
Multilayer Perceptron.
ENGENHARIA ELETRICA
dc.subject.eng.fl_str_mv Winding interturn short-circuit
Three Phase Induction Motor
Multilayer Perceptron.
dc.subject.cnpq.fl_str_mv ENGENHARIA ELETRICA
dc.description.sponsorship.fl_txt_mv CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
dc.description.abstract.por.fl_txt_mv This dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches.
Este trabalho deriva da aplicaÃÃo de redes neurais artificiais para a detecÃÃo de curto-circuito entre espiras em motor de induÃÃo trifÃsico, acionado por inversor de frequÃncia. As redes neurais artificiais, do tipo Perceptron Simples e Multicamadas, sÃo usadas para detectar falhas de curto-circuito no bobinamento estatÃrico de motores de induÃÃo trifÃsicos de forma off-line. Para treinamento do Perceptron Multicamadas sÃo usados dois algoritmos distintos: o error back-propagation, que figura como o algoritmo clÃssico na literatura especializada, e o extreme learning machine, que à uma alternativa, relativamente recente, ao algoritmo clÃssico. Este algoritmo à uma opÃÃo atraente para o desenvolvimento rÃpido de classificadores. O banco de dados usado para treinamento e validaÃÃo das redes à obtido a partir de experimentaÃÃo laboratorial, portanto composto de dados reais. Os atributos utilizados para a detecÃÃo da falha sÃo componentes de frequÃncia do espectro harmÃnico da corrente estatÃrica do motor. O critÃrio de escolha destas componentes, a priori, à fundamentado em resultados de investigaÃÃes prÃvias da assinatura de corrente e, em segunda instÃncia, à aplicada a tÃcnica de anÃlise de componentes principais. SÃo apresentados os resultados obtidospelos classificadores projetados, e feitas algumas consideraÃÃes quanto à utilizaÃÃo destes em aplicaÃÃo embarcada e em tempo real, que à a principal projeÃÃo de futuros trabalhos a partir do atual.
description This dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches.
publishDate 2014
dc.date.issued.fl_str_mv 2014-05-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em Engenharia ElÃtrica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295191522607104