Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285 |
Resumo: | This dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches. |
id |
UFC_184d77270192d96ef278abf463736dfd |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:8405 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisNeural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter Classificadores neurais aplicados na detecÃÃo de curto-circuito entre espiras estatÃricas em motores de induÃÃo trifÃsicos acionados por conversores de frequÃncia2014-05-23Ricardo Silva Thà Pontes09189599349http://lattes.cnpq.br/1674775796751929Guilherme de Alencar Barreto32841450368http://lattes.cnpq.br/8902002461422112Clayton Ricarte da Silva11587946300http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4706950D6ClÃudio Marques de Sà Medeiros02545216587MEDEIROS, C. M. S.Arthur PlÃnio de Souza Braga42395194387http://lattes.cnpq.br/1473823107869382 02931953318Ãtila GirÃo de OliveiraUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia ElÃtricaUFCBRCurto circuito entre espiras Motor de InduÃÃo TrifÃsicoWinding interturn short-circuit Three Phase Induction Motor Multilayer Perceptron. ENGENHARIA ELETRICAThis dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches. Este trabalho deriva da aplicaÃÃo de redes neurais artificiais para a detecÃÃo de curto-circuito entre espiras em motor de induÃÃo trifÃsico, acionado por inversor de frequÃncia. As redes neurais artificiais, do tipo Perceptron Simples e Multicamadas, sÃo usadas para detectar falhas de curto-circuito no bobinamento estatÃrico de motores de induÃÃo trifÃsicos de forma off-line. Para treinamento do Perceptron Multicamadas sÃo usados dois algoritmos distintos: o error back-propagation, que figura como o algoritmo clÃssico na literatura especializada, e o extreme learning machine, que à uma alternativa, relativamente recente, ao algoritmo clÃssico. Este algoritmo à uma opÃÃo atraente para o desenvolvimento rÃpido de classificadores. O banco de dados usado para treinamento e validaÃÃo das redes à obtido a partir de experimentaÃÃo laboratorial, portanto composto de dados reais. Os atributos utilizados para a detecÃÃo da falha sÃo componentes de frequÃncia do espectro harmÃnico da corrente estatÃrica do motor. O critÃrio de escolha destas componentes, a priori, à fundamentado em resultados de investigaÃÃes prÃvias da assinatura de corrente e, em segunda instÃncia, à aplicada a tÃcnica de anÃlise de componentes principais. SÃo apresentados os resultados obtidospelos classificadores projetados, e feitas algumas consideraÃÃes quanto à utilizaÃÃo destes em aplicaÃÃo embarcada e em tempo real, que à a principal projeÃÃo de futuros trabalhos a partir do atual. CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superiorhttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:25:29Zmail@mail.com - |
dc.title.en.fl_str_mv |
Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter |
dc.title.alternative.pt.fl_str_mv |
Classificadores neurais aplicados na detecÃÃo de curto-circuito entre espiras estatÃricas em motores de induÃÃo trifÃsicos acionados por conversores de frequÃncia |
title |
Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter |
spellingShingle |
Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter Ãtila GirÃo de Oliveira Curto circuito entre espiras Motor de InduÃÃo TrifÃsico Winding interturn short-circuit Three Phase Induction Motor Multilayer Perceptron. ENGENHARIA ELETRICA |
title_short |
Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter |
title_full |
Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter |
title_fullStr |
Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter |
title_full_unstemmed |
Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter |
title_sort |
Neural classifier aplied in stator winding inter-turn short circuit in three-phase induction motors driven by frequency converter |
author |
Ãtila GirÃo de Oliveira |
author_facet |
Ãtila GirÃo de Oliveira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Ricardo Silva Thà Pontes |
dc.contributor.advisor1ID.fl_str_mv |
09189599349 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1674775796751929 |
dc.contributor.referee1.fl_str_mv |
Guilherme de Alencar Barreto |
dc.contributor.referee1ID.fl_str_mv |
32841450368 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/8902002461422112 |
dc.contributor.referee2.fl_str_mv |
Clayton Ricarte da Silva |
dc.contributor.referee2ID.fl_str_mv |
11587946300 |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4706950D6 |
dc.contributor.referee3.fl_str_mv |
ClÃudio Marques de SÃ Medeiros |
dc.contributor.referee3ID.fl_str_mv |
02545216587 |
dc.contributor.referee3Lattes.fl_str_mv |
MEDEIROS, C. M. S. |
dc.contributor.referee4.fl_str_mv |
Arthur PlÃnio de Souza Braga |
dc.contributor.referee4ID.fl_str_mv |
42395194387 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/1473823107869382 |
dc.contributor.authorID.fl_str_mv |
02931953318 |
dc.contributor.author.fl_str_mv |
Ãtila GirÃo de Oliveira |
contributor_str_mv |
Ricardo Silva Thà Pontes Guilherme de Alencar Barreto Clayton Ricarte da Silva ClÃudio Marques de Sà Medeiros Arthur PlÃnio de Souza Braga |
dc.subject.por.fl_str_mv |
Curto circuito entre espiras Motor de InduÃÃo TrifÃsico |
topic |
Curto circuito entre espiras Motor de InduÃÃo TrifÃsico Winding interturn short-circuit Three Phase Induction Motor Multilayer Perceptron. ENGENHARIA ELETRICA |
dc.subject.eng.fl_str_mv |
Winding interturn short-circuit Three Phase Induction Motor Multilayer Perceptron. |
dc.subject.cnpq.fl_str_mv |
ENGENHARIA ELETRICA |
dc.description.sponsorship.fl_txt_mv |
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior |
dc.description.abstract.por.fl_txt_mv |
This dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches. Este trabalho deriva da aplicaÃÃo de redes neurais artificiais para a detecÃÃo de curto-circuito entre espiras em motor de induÃÃo trifÃsico, acionado por inversor de frequÃncia. As redes neurais artificiais, do tipo Perceptron Simples e Multicamadas, sÃo usadas para detectar falhas de curto-circuito no bobinamento estatÃrico de motores de induÃÃo trifÃsicos de forma off-line. Para treinamento do Perceptron Multicamadas sÃo usados dois algoritmos distintos: o error back-propagation, que figura como o algoritmo clÃssico na literatura especializada, e o extreme learning machine, que à uma alternativa, relativamente recente, ao algoritmo clÃssico. Este algoritmo à uma opÃÃo atraente para o desenvolvimento rÃpido de classificadores. O banco de dados usado para treinamento e validaÃÃo das redes à obtido a partir de experimentaÃÃo laboratorial, portanto composto de dados reais. Os atributos utilizados para a detecÃÃo da falha sÃo componentes de frequÃncia do espectro harmÃnico da corrente estatÃrica do motor. O critÃrio de escolha destas componentes, a priori, à fundamentado em resultados de investigaÃÃes prÃvias da assinatura de corrente e, em segunda instÃncia, à aplicada a tÃcnica de anÃlise de componentes principais. SÃo apresentados os resultados obtidospelos classificadores projetados, e feitas algumas consideraÃÃes quanto à utilizaÃÃo destes em aplicaÃÃo embarcada e em tempo real, que à a principal projeÃÃo de futuros trabalhos a partir do atual. |
description |
This dissertation reports applications of artificial neural networks to detect stator winding interturn fault of three phase induction motor drived by frequency inverter. The artificial neural networks, like Simple and Multilayer Perceptron, served as off-line classifiers to short-circuit fault condition or healthy condition. In the training of Multilayer Perceptron, two different algorithms are used: the error back-propagation, which is a classic algorithm, and the extreme learning machine, as a relative new alternative for the classic back-propagation. The new one is more worthwhile because of its implementation easiness and higher speed of computation. The database used on the training and validation of the networks is created from an experimental setting, therefore it is composed by true data. The attributes used as failuresâ indicators are selected from certain frequencies of the spectrum, based on some theories of current signature analysis. In the second instance, the technique of principal components analysis is employed. The results obtained for the designed classifiers are shown, and some considerations are made on their use in real time embedded applications, which is the most important projection for future researches. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-05-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12285 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Engenharia ElÃtrica |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295191522607104 |