Particle swarm optimization and differential evolution for base station placement with multi-objective requirements
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15069 |
Resumo: | The infrastructure expansion planning in cellular networks, so called Base Station Placement (BSP) problem, is a challenging task that must consider a large set of aspects, and which cannot be expressed as a linear optimization function. The BSP is known to be a NP-hard problem unable to be solved by any deterministic method. Based on some fundamental assumptions of Long Term Evolution - Advanced (LTE-A) networks, this work proceeds to investigate the use of two methods for BSP optimization task: the Particle Swarm Optimization (PSO) and the Differential Evolution (DE), which were adapted for placement of many new network nodes simultaneously. The optimization process follows two multi-objective functions used as fitness criteria for measuring the performance of each node and of the network. The optimization process is performed in three scenarios where one of them presents actual data collected from a real city. For each scenario, the fitness performance of both methods as well as the optimized points found by each technique are presented. |
id |
UFC_60c1d4d8059ca69715b834b179626e23 |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:10022 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisParticle swarm optimization and differential evolution for base station placement with multi-objective requirementsOtimizaÃÃo por enxame de partÃculas e evoluÃÃo diferencial para a colocaÃÃo de estaÃÃo de base com os requisitos multi-objetivas2015-07-15Francisco Rodrigo Porto Cavalcanti42250153353http://lattes.cnpq.br/5359073935110357Francisco Rafael Marques Lima61714143368http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4735186T6TarcÃsio Ferreira Maciel54744598315http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4760135U5Emanuel Bezerra Rodrigues61835650325http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766793E502173100360http://lattes.cnpq.br/0917260030364584Marciel Barros PereiraUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em Engenharia de TeleinformÃticaUFCBR OtimizaÃÃo heurÃstica EvoluÃÃo Diferencial Planejamento de redes celularesBase Station Placement Problem Particle Swarm Optimization Differential EvolutionSISTEMAS DE TELECOMUNICACOESThe infrastructure expansion planning in cellular networks, so called Base Station Placement (BSP) problem, is a challenging task that must consider a large set of aspects, and which cannot be expressed as a linear optimization function. The BSP is known to be a NP-hard problem unable to be solved by any deterministic method. Based on some fundamental assumptions of Long Term Evolution - Advanced (LTE-A) networks, this work proceeds to investigate the use of two methods for BSP optimization task: the Particle Swarm Optimization (PSO) and the Differential Evolution (DE), which were adapted for placement of many new network nodes simultaneously. The optimization process follows two multi-objective functions used as fitness criteria for measuring the performance of each node and of the network. The optimization process is performed in three scenarios where one of them presents actual data collected from a real city. For each scenario, the fitness performance of both methods as well as the optimized points found by each technique are presented.O planejamento de expansÃo de infraestrutura em redes celulares à uma desafio que exige considerar diversos aspectos que nÃo podem ser separados em uma funÃÃo de otimizaÃÃo linear. Tal problema de posicionamento de estaÃÃes base à conhecido por ser do tipo NP-hard, que nÃo pode ser resolvido por qualquer mÃtodo determinÃstico. Assumindo caracterÃsticas bÃsicas da tecnologia Long Term Evolution (LTE)-Advanced (LTE-A), este trabalho procede à investigaÃÃo do uso de dois mÃtodos para otimizaÃÃo de posicionamento de estaÃÃes base: OtimizaÃÃo por Enxame de PartÃculas â Particle Swarm Optimization (PSO) â e EvoluÃÃo Diferencial â Differential Evolution (DE) â adaptados para posicionamento de mÃltiplas estaÃÃes base simultaneamente. O processo de otimizaÃÃo à orientado por dois tipos de funÃÃes custo com multiobjetivos, que medem o desempenho dos novos nÃs individualmente e de toda a rede coletivamente. A otimizaÃÃo à realizada em trÃs cenÃrios, dos quais um deles apresenta dados reais coletados de uma cidade. Para cada cenÃrio, sÃo exibidos o desempenho dos dois algoritmos em termos da melhoria na funÃÃo objetivo e os pontos encontrados no processo de otimizaÃÃo por cada uma das tÃcnicasFundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15069application/pdfinfo:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:28:08Zmail@mail.com - |
dc.title.en.fl_str_mv |
Particle swarm optimization and differential evolution for base station placement with multi-objective requirements |
dc.title.alternative.pt.fl_str_mv |
OtimizaÃÃo por enxame de partÃculas e evoluÃÃo diferencial para a colocaÃÃo de estaÃÃo de base com os requisitos multi-objetivas |
title |
Particle swarm optimization and differential evolution for base station placement with multi-objective requirements |
spellingShingle |
Particle swarm optimization and differential evolution for base station placement with multi-objective requirements Marciel Barros Pereira OtimizaÃÃo heurÃstica EvoluÃÃo Diferencial Planejamento de redes celulares Base Station Placement Problem Particle Swarm Optimization Differential Evolution SISTEMAS DE TELECOMUNICACOES |
title_short |
Particle swarm optimization and differential evolution for base station placement with multi-objective requirements |
title_full |
Particle swarm optimization and differential evolution for base station placement with multi-objective requirements |
title_fullStr |
Particle swarm optimization and differential evolution for base station placement with multi-objective requirements |
title_full_unstemmed |
Particle swarm optimization and differential evolution for base station placement with multi-objective requirements |
title_sort |
Particle swarm optimization and differential evolution for base station placement with multi-objective requirements |
author |
Marciel Barros Pereira |
author_facet |
Marciel Barros Pereira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Francisco Rodrigo Porto Cavalcanti |
dc.contributor.advisor1ID.fl_str_mv |
42250153353 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5359073935110357 |
dc.contributor.referee1.fl_str_mv |
Francisco Rafael Marques Lima |
dc.contributor.referee1ID.fl_str_mv |
61714143368 |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4735186T6 |
dc.contributor.referee2.fl_str_mv |
TarcÃsio Ferreira Maciel |
dc.contributor.referee2ID.fl_str_mv |
54744598315 |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4760135U5 |
dc.contributor.referee3.fl_str_mv |
Emanuel Bezerra Rodrigues |
dc.contributor.referee3ID.fl_str_mv |
61835650325 |
dc.contributor.referee3Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766793E5 |
dc.contributor.authorID.fl_str_mv |
02173100360 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0917260030364584 |
dc.contributor.author.fl_str_mv |
Marciel Barros Pereira |
contributor_str_mv |
Francisco Rodrigo Porto Cavalcanti Francisco Rafael Marques Lima TarcÃsio Ferreira Maciel Emanuel Bezerra Rodrigues |
dc.subject.por.fl_str_mv |
OtimizaÃÃo heurÃstica EvoluÃÃo Diferencial Planejamento de redes celulares |
topic |
OtimizaÃÃo heurÃstica EvoluÃÃo Diferencial Planejamento de redes celulares Base Station Placement Problem Particle Swarm Optimization Differential Evolution SISTEMAS DE TELECOMUNICACOES |
dc.subject.eng.fl_str_mv |
Base Station Placement Problem Particle Swarm Optimization Differential Evolution |
dc.subject.cnpq.fl_str_mv |
SISTEMAS DE TELECOMUNICACOES |
dc.description.sponsorship.fl_txt_mv |
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico |
dc.description.abstract.por.fl_txt_mv |
The infrastructure expansion planning in cellular networks, so called Base Station Placement (BSP) problem, is a challenging task that must consider a large set of aspects, and which cannot be expressed as a linear optimization function. The BSP is known to be a NP-hard problem unable to be solved by any deterministic method. Based on some fundamental assumptions of Long Term Evolution - Advanced (LTE-A) networks, this work proceeds to investigate the use of two methods for BSP optimization task: the Particle Swarm Optimization (PSO) and the Differential Evolution (DE), which were adapted for placement of many new network nodes simultaneously. The optimization process follows two multi-objective functions used as fitness criteria for measuring the performance of each node and of the network. The optimization process is performed in three scenarios where one of them presents actual data collected from a real city. For each scenario, the fitness performance of both methods as well as the optimized points found by each technique are presented. O planejamento de expansÃo de infraestrutura em redes celulares à uma desafio que exige considerar diversos aspectos que nÃo podem ser separados em uma funÃÃo de otimizaÃÃo linear. Tal problema de posicionamento de estaÃÃes base à conhecido por ser do tipo NP-hard, que nÃo pode ser resolvido por qualquer mÃtodo determinÃstico. Assumindo caracterÃsticas bÃsicas da tecnologia Long Term Evolution (LTE)-Advanced (LTE-A), este trabalho procede à investigaÃÃo do uso de dois mÃtodos para otimizaÃÃo de posicionamento de estaÃÃes base: OtimizaÃÃo por Enxame de PartÃculas â Particle Swarm Optimization (PSO) â e EvoluÃÃo Diferencial â Differential Evolution (DE) â adaptados para posicionamento de mÃltiplas estaÃÃes base simultaneamente. O processo de otimizaÃÃo à orientado por dois tipos de funÃÃes custo com multiobjetivos, que medem o desempenho dos novos nÃs individualmente e de toda a rede coletivamente. A otimizaÃÃo à realizada em trÃs cenÃrios, dos quais um deles apresenta dados reais coletados de uma cidade. Para cada cenÃrio, sÃo exibidos o desempenho dos dois algoritmos em termos da melhoria na funÃÃo objetivo e os pontos encontrados no processo de otimizaÃÃo por cada uma das tÃcnicas |
description |
The infrastructure expansion planning in cellular networks, so called Base Station Placement (BSP) problem, is a challenging task that must consider a large set of aspects, and which cannot be expressed as a linear optimization function. The BSP is known to be a NP-hard problem unable to be solved by any deterministic method. Based on some fundamental assumptions of Long Term Evolution - Advanced (LTE-A) networks, this work proceeds to investigate the use of two methods for BSP optimization task: the Particle Swarm Optimization (PSO) and the Differential Evolution (DE), which were adapted for placement of many new network nodes simultaneously. The optimization process follows two multi-objective functions used as fitness criteria for measuring the performance of each node and of the network. The optimization process is performed in three scenarios where one of them presents actual data collected from a real city. For each scenario, the fitness performance of both methods as well as the optimized points found by each technique are presented. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-07-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15069 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15069 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295207756660736 |