A infinitary system of the logic of least fixed-point

Detalhes bibliográficos
Autor(a) principal: Alexandre Matos Arruda
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1325
Resumo: A noÃÃo de menor ponto-fixo de um operador à amplamente aplicada na ciÃncia da computaÃÃo como, por exemplo, no contexto das linguagens de consulta para bancos de dados relacionais. Algumas extensÃes da LÃgica de Primeira-Ordem (FOL)1 com operadores de ponto-fixo em estruturas finitas, como a lÃgica de menor ponto-fixo (LFP)2, foram propostas para lidar com problemas relacionados à expressividade de FOL. A LFP captura as classes de complexidade PTIME sobre a classe das estruturas finitas ordenadas. A caracterizaÃÃo descritiva de classes computacionais à uma abordagem central em Teoria do Modelos Finitos (FMT)3. O teorema de Trakhtenbrot, considerado o ponto de partida para FMT, estabelece que a validade sobre modelos finitos nÃo à recursivamente enumerÃvel, isto Ã, a completude falha sobre modelos finitos. Este resultado à baseado na hipÃtese de que qualquer sistema dedutivo à de natureza finita. Entretanto, nos podemos relaxar tal hipÃtese como foi feito no escopo da teoria da prova para aritmÃtica. A teoria da prova tem raÃzes no programa de Hilbert. ConseqÃÃncias teÃricas da noÃÃo de prova sÃo, por exemplo, relacionadas a teoremas de normalizaÃÃo, consistÃncia, decidibilidade, e resultados de complexidade. A teoria da prova para aritmÃtica tambÃm à motivada pelos teoremas de incompletude de GÃdel, cujo alvo foi fornecer um exemplo de um princÃpio matemÃtico verdadeiro e significativo que nÃo à derivÃvel na aritmÃtica de primeira-ordem. Um meio de apresentar esta prova à baseado na definiÃÃo de um sistema de prova com uma regra infinitÃria, a w-rule, que estabiliza a consistÃncia da aritmÃtica de primeira-ordem atravÃs de uma perspectiva de teoria da prova. Motivados por esta prova, iremos propor aqui um sistema infinitÃrio de prova para LFP que nos permitirà investigar propriedades em teoria da prova. Com tal sistema dedutivo infinito, pretendemos apresentar uma teoria da prova para uma lÃgica tradicionalmente definida no escopo de FMT. Permanece aberto um caminho alternativo de provar resultados jà obtidos com FMT e tambÃm novos resultados do ponto de vista da teoria da prova. AlÃm disso, iremos propor um procedimento de normalizaÃÃo com restriÃÃes para este sistema dedutivo, que pode ser usado em um provador de teoremas para computar consultas em banco de dados relacionais
id UFC_d31917c845d7e8b7b8af8188b94a5391
oai_identifier_str oai:www.teses.ufc.br:1168
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisA infinitary system of the logic of least fixed-pointUm sistema infinitÃrio para a lÃgica de menor ponto fixo2007-08-24Ana Teresa de Castro Martins23070200397http://lattes.cnpq.br/8173372566989305Luiz Carlos Pinheiro Dias Pereira17913322187http://lattes.cnpq.br/8418729116626386Carlos Eduardo Fisch de Brito02182847723http://lattes.cnpq.br/838525913072953200093762321http://lattes.cnpq.br/9877991623494574Alexandre Matos ArrudaUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃoUFCBRLÃgica de menor ponto-fixo, teoria dos modelos finitos, teoria da prova, sistema de deduÃÃo natural infinitÃrio Least fixed-point logic, finite model theory, proof theory, infinitary natural deduction system.CIENCIA DA COMPUTACAOA noÃÃo de menor ponto-fixo de um operador à amplamente aplicada na ciÃncia da computaÃÃo como, por exemplo, no contexto das linguagens de consulta para bancos de dados relacionais. Algumas extensÃes da LÃgica de Primeira-Ordem (FOL)1 com operadores de ponto-fixo em estruturas finitas, como a lÃgica de menor ponto-fixo (LFP)2, foram propostas para lidar com problemas relacionados à expressividade de FOL. A LFP captura as classes de complexidade PTIME sobre a classe das estruturas finitas ordenadas. A caracterizaÃÃo descritiva de classes computacionais à uma abordagem central em Teoria do Modelos Finitos (FMT)3. O teorema de Trakhtenbrot, considerado o ponto de partida para FMT, estabelece que a validade sobre modelos finitos nÃo à recursivamente enumerÃvel, isto Ã, a completude falha sobre modelos finitos. Este resultado à baseado na hipÃtese de que qualquer sistema dedutivo à de natureza finita. Entretanto, nos podemos relaxar tal hipÃtese como foi feito no escopo da teoria da prova para aritmÃtica. A teoria da prova tem raÃzes no programa de Hilbert. ConseqÃÃncias teÃricas da noÃÃo de prova sÃo, por exemplo, relacionadas a teoremas de normalizaÃÃo, consistÃncia, decidibilidade, e resultados de complexidade. A teoria da prova para aritmÃtica tambÃm à motivada pelos teoremas de incompletude de GÃdel, cujo alvo foi fornecer um exemplo de um princÃpio matemÃtico verdadeiro e significativo que nÃo à derivÃvel na aritmÃtica de primeira-ordem. Um meio de apresentar esta prova à baseado na definiÃÃo de um sistema de prova com uma regra infinitÃria, a w-rule, que estabiliza a consistÃncia da aritmÃtica de primeira-ordem atravÃs de uma perspectiva de teoria da prova. Motivados por esta prova, iremos propor aqui um sistema infinitÃrio de prova para LFP que nos permitirà investigar propriedades em teoria da prova. Com tal sistema dedutivo infinito, pretendemos apresentar uma teoria da prova para uma lÃgica tradicionalmente definida no escopo de FMT. Permanece aberto um caminho alternativo de provar resultados jà obtidos com FMT e tambÃm novos resultados do ponto de vista da teoria da prova. AlÃm disso, iremos propor um procedimento de normalizaÃÃo com restriÃÃes para este sistema dedutivo, que pode ser usado em um provador de teoremas para computar consultas em banco de dados relacionaisThe notion of the least fixed-point of an operator is widely applied in computer science as, for instance, in the context of query languages for relational databases. Some extensions of FOL with _xed-point operators on finite structures, as the least fixed-point logic (LFP), were proposed to deal with problem problems related to the expressivity of FOL. LFP captures the complexity class PTIME over the class of _nite ordered structures. The descriptive characterization of computational classes is a central issue within _nite model theory (FMT). Trakhtenbrot's theorem, considered the starting point of FMT, states that validity over finite models is not recursively enumerable, that is, completeness fails over finite models. This result is based on an underlying assumption that any deductive system is of finite nature. However, we can relax such assumption as done in the scope of proof theory for arithmetic. Proof theory has roots in the Hilbert's programme. Proof theoretical consequences are, for instance, related to normalization theorems, consistency, decidability, and complexity results. The proof theory for arithmetic is also motivated by Godel incompleteness theorems. It aims to o_er an example of a true mathematically meaningful principle not derivable in first-order arithmetic. One way of presenting this proof is based on a definition of a proof system with an infinitary rule, the w-rule, that establishes the consistency of first-order arithmetic through a proof-theoretical perspective. Motivated by this proof, here we will propose an in_nitary proof system for LFP that will allow us to investigate proof theoretical properties. With such in_nitary deductive system, we aim to present a proof theory for a logic traditionally defined within the scope of FMT. It opens up an alternative way of proving results already obtained within FMT and also new results through a proof theoretical perspective. Moreover, we will propose a normalization procedure with some restrictions on the rules, such this deductive system can be used in a theorem prover to compute queries on relational databases. FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1325application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:14:16Zmail@mail.com -
dc.title.en.fl_str_mv A infinitary system of the logic of least fixed-point
dc.title.alternative.pt.fl_str_mv Um sistema infinitÃrio para a lÃgica de menor ponto fixo
title A infinitary system of the logic of least fixed-point
spellingShingle A infinitary system of the logic of least fixed-point
Alexandre Matos Arruda
LÃgica de menor ponto-fixo, teoria dos modelos finitos, teoria da prova, sistema de deduÃÃo natural infinitÃrio
Least fixed-point logic, finite model theory, proof theory, infinitary natural deduction system.
CIENCIA DA COMPUTACAO
title_short A infinitary system of the logic of least fixed-point
title_full A infinitary system of the logic of least fixed-point
title_fullStr A infinitary system of the logic of least fixed-point
title_full_unstemmed A infinitary system of the logic of least fixed-point
title_sort A infinitary system of the logic of least fixed-point
author Alexandre Matos Arruda
author_facet Alexandre Matos Arruda
author_role author
dc.contributor.advisor1.fl_str_mv Ana Teresa de Castro Martins
dc.contributor.advisor1ID.fl_str_mv 23070200397
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8173372566989305
dc.contributor.advisor-co1.fl_str_mv Luiz Carlos Pinheiro Dias Pereira
dc.contributor.advisor-co1ID.fl_str_mv 17913322187
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8418729116626386
dc.contributor.referee1.fl_str_mv Carlos Eduardo Fisch de Brito
dc.contributor.referee1ID.fl_str_mv 02182847723
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8385259130729532
dc.contributor.authorID.fl_str_mv 00093762321
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9877991623494574
dc.contributor.author.fl_str_mv Alexandre Matos Arruda
contributor_str_mv Ana Teresa de Castro Martins
Luiz Carlos Pinheiro Dias Pereira
Carlos Eduardo Fisch de Brito
dc.subject.por.fl_str_mv LÃgica de menor ponto-fixo, teoria dos modelos finitos, teoria da prova, sistema de deduÃÃo natural infinitÃrio
topic LÃgica de menor ponto-fixo, teoria dos modelos finitos, teoria da prova, sistema de deduÃÃo natural infinitÃrio
Least fixed-point logic, finite model theory, proof theory, infinitary natural deduction system.
CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Least fixed-point logic, finite model theory, proof theory, infinitary natural deduction system.
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO
dc.description.sponsorship.fl_txt_mv FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv A noÃÃo de menor ponto-fixo de um operador à amplamente aplicada na ciÃncia da computaÃÃo como, por exemplo, no contexto das linguagens de consulta para bancos de dados relacionais. Algumas extensÃes da LÃgica de Primeira-Ordem (FOL)1 com operadores de ponto-fixo em estruturas finitas, como a lÃgica de menor ponto-fixo (LFP)2, foram propostas para lidar com problemas relacionados à expressividade de FOL. A LFP captura as classes de complexidade PTIME sobre a classe das estruturas finitas ordenadas. A caracterizaÃÃo descritiva de classes computacionais à uma abordagem central em Teoria do Modelos Finitos (FMT)3. O teorema de Trakhtenbrot, considerado o ponto de partida para FMT, estabelece que a validade sobre modelos finitos nÃo à recursivamente enumerÃvel, isto Ã, a completude falha sobre modelos finitos. Este resultado à baseado na hipÃtese de que qualquer sistema dedutivo à de natureza finita. Entretanto, nos podemos relaxar tal hipÃtese como foi feito no escopo da teoria da prova para aritmÃtica. A teoria da prova tem raÃzes no programa de Hilbert. ConseqÃÃncias teÃricas da noÃÃo de prova sÃo, por exemplo, relacionadas a teoremas de normalizaÃÃo, consistÃncia, decidibilidade, e resultados de complexidade. A teoria da prova para aritmÃtica tambÃm à motivada pelos teoremas de incompletude de GÃdel, cujo alvo foi fornecer um exemplo de um princÃpio matemÃtico verdadeiro e significativo que nÃo à derivÃvel na aritmÃtica de primeira-ordem. Um meio de apresentar esta prova à baseado na definiÃÃo de um sistema de prova com uma regra infinitÃria, a w-rule, que estabiliza a consistÃncia da aritmÃtica de primeira-ordem atravÃs de uma perspectiva de teoria da prova. Motivados por esta prova, iremos propor aqui um sistema infinitÃrio de prova para LFP que nos permitirà investigar propriedades em teoria da prova. Com tal sistema dedutivo infinito, pretendemos apresentar uma teoria da prova para uma lÃgica tradicionalmente definida no escopo de FMT. Permanece aberto um caminho alternativo de provar resultados jà obtidos com FMT e tambÃm novos resultados do ponto de vista da teoria da prova. AlÃm disso, iremos propor um procedimento de normalizaÃÃo com restriÃÃes para este sistema dedutivo, que pode ser usado em um provador de teoremas para computar consultas em banco de dados relacionais
dc.description.abstract.eng.fl_txt_mv The notion of the least fixed-point of an operator is widely applied in computer science as, for instance, in the context of query languages for relational databases. Some extensions of FOL with _xed-point operators on finite structures, as the least fixed-point logic (LFP), were proposed to deal with problem problems related to the expressivity of FOL. LFP captures the complexity class PTIME over the class of _nite ordered structures. The descriptive characterization of computational classes is a central issue within _nite model theory (FMT). Trakhtenbrot's theorem, considered the starting point of FMT, states that validity over finite models is not recursively enumerable, that is, completeness fails over finite models. This result is based on an underlying assumption that any deductive system is of finite nature. However, we can relax such assumption as done in the scope of proof theory for arithmetic. Proof theory has roots in the Hilbert's programme. Proof theoretical consequences are, for instance, related to normalization theorems, consistency, decidability, and complexity results. The proof theory for arithmetic is also motivated by Godel incompleteness theorems. It aims to o_er an example of a true mathematically meaningful principle not derivable in first-order arithmetic. One way of presenting this proof is based on a definition of a proof system with an infinitary rule, the w-rule, that establishes the consistency of first-order arithmetic through a proof-theoretical perspective. Motivated by this proof, here we will propose an in_nitary proof system for LFP that will allow us to investigate proof theoretical properties. With such in_nitary deductive system, we aim to present a proof theory for a logic traditionally defined within the scope of FMT. It opens up an alternative way of proving results already obtained within FMT and also new results through a proof theoretical perspective. Moreover, we will propose a normalization procedure with some restrictions on the rules, such this deductive system can be used in a theorem prover to compute queries on relational databases.
description A noÃÃo de menor ponto-fixo de um operador à amplamente aplicada na ciÃncia da computaÃÃo como, por exemplo, no contexto das linguagens de consulta para bancos de dados relacionais. Algumas extensÃes da LÃgica de Primeira-Ordem (FOL)1 com operadores de ponto-fixo em estruturas finitas, como a lÃgica de menor ponto-fixo (LFP)2, foram propostas para lidar com problemas relacionados à expressividade de FOL. A LFP captura as classes de complexidade PTIME sobre a classe das estruturas finitas ordenadas. A caracterizaÃÃo descritiva de classes computacionais à uma abordagem central em Teoria do Modelos Finitos (FMT)3. O teorema de Trakhtenbrot, considerado o ponto de partida para FMT, estabelece que a validade sobre modelos finitos nÃo à recursivamente enumerÃvel, isto Ã, a completude falha sobre modelos finitos. Este resultado à baseado na hipÃtese de que qualquer sistema dedutivo à de natureza finita. Entretanto, nos podemos relaxar tal hipÃtese como foi feito no escopo da teoria da prova para aritmÃtica. A teoria da prova tem raÃzes no programa de Hilbert. ConseqÃÃncias teÃricas da noÃÃo de prova sÃo, por exemplo, relacionadas a teoremas de normalizaÃÃo, consistÃncia, decidibilidade, e resultados de complexidade. A teoria da prova para aritmÃtica tambÃm à motivada pelos teoremas de incompletude de GÃdel, cujo alvo foi fornecer um exemplo de um princÃpio matemÃtico verdadeiro e significativo que nÃo à derivÃvel na aritmÃtica de primeira-ordem. Um meio de apresentar esta prova à baseado na definiÃÃo de um sistema de prova com uma regra infinitÃria, a w-rule, que estabiliza a consistÃncia da aritmÃtica de primeira-ordem atravÃs de uma perspectiva de teoria da prova. Motivados por esta prova, iremos propor aqui um sistema infinitÃrio de prova para LFP que nos permitirà investigar propriedades em teoria da prova. Com tal sistema dedutivo infinito, pretendemos apresentar uma teoria da prova para uma lÃgica tradicionalmente definida no escopo de FMT. Permanece aberto um caminho alternativo de provar resultados jà obtidos com FMT e tambÃm novos resultados do ponto de vista da teoria da prova. AlÃm disso, iremos propor um procedimento de normalizaÃÃo com restriÃÃes para este sistema dedutivo, que pode ser usado em um provador de teoremas para computar consultas em banco de dados relacionais
publishDate 2007
dc.date.issued.fl_str_mv 2007-08-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1325
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1325
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em CiÃncia da ComputaÃÃo
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295118321516544