Data mining for ranking sorghum seed lots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Caatinga |
Texto Completo: | https://periodicos.ufersa.edu.br/caatinga/article/view/11310 |
Resumo: | The ranking of seed lots is a fundamental process for all companies in the seed industry. This work aims to demonstrate data mining methods for ranking sorghum seed lots during the seed processing through analysis of quality control data. Germination and cold tests were performed to verify the physiological quality of the lots. Seed samples from each lot were evaluated in two moments: post-cleaning and finished product (ready for marketing). The results after pre-processing totaled 188 rows of data with six attributes, encompassing 150 lots accepted for marketing, 6 rejected, and 32 intermediate lots. The classifiers used were J48, Random Forest, Classification Via Regression, Naive Bayes, Multilayer Perceptron, and IBk. The Resample filter was used for adjustment of the data. The k-fold technique was used for training, with ten folds. The metrics of Accuracy, Precision, Recall, F-measure, and ROC Area were used to verify the accuracy of the algorithms. The results obtained were used to determine the best machine-learning algorithm. IBk and J48 presented the highest accuracy of data; the IBk technique presented the best results. The Resample filter was essential for solving the data imbalance problem. Sorghum seed lots can be classified with great accuracy and precision through artificial intelligence and machine learning technique. |
id |
UFERSA-1_865e22f0726e554a886eb044470f8e0d |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufersa.edu.br:article/11310 |
network_acronym_str |
UFERSA-1 |
network_name_str |
Revista Caatinga |
repository_id_str |
|
spelling |
Data mining for ranking sorghum seed lotsMineração de dados no ranqueamento de lotes de sementes de sorgoQualidadeTecnologia de pós-colheitaGases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial.QualityPost-harvest technologyArtificial intelligence. Image processing. Seeds.The ranking of seed lots is a fundamental process for all companies in the seed industry. This work aims to demonstrate data mining methods for ranking sorghum seed lots during the seed processing through analysis of quality control data. Germination and cold tests were performed to verify the physiological quality of the lots. Seed samples from each lot were evaluated in two moments: post-cleaning and finished product (ready for marketing). The results after pre-processing totaled 188 rows of data with six attributes, encompassing 150 lots accepted for marketing, 6 rejected, and 32 intermediate lots. The classifiers used were J48, Random Forest, Classification Via Regression, Naive Bayes, Multilayer Perceptron, and IBk. The Resample filter was used for adjustment of the data. The k-fold technique was used for training, with ten folds. The metrics of Accuracy, Precision, Recall, F-measure, and ROC Area were used to verify the accuracy of the algorithms. The results obtained were used to determine the best machine-learning algorithm. IBk and J48 presented the highest accuracy of data; the IBk technique presented the best results. The Resample filter was essential for solving the data imbalance problem. Sorghum seed lots can be classified with great accuracy and precision through artificial intelligence and machine learning technique.A classificação de lotes de sementes é um processo fundamental para todas as empresas do setor sementeiro. O objetivo do trabalho é demonstrar os métodos de mineração de dados de ranqueamento de lotes de sementes de sorgo durante o processo de beneficiamento, através de análises de dados do controle de qualidade. Os testes realizados foram germinação e teste de frio, com o objetivo de verificar a qualidade fisiológica dos lotes. As amostras de sementes de cada lote foram avaliadas em dois momentos: pós-limpeza e produto acabado (pronto para comercialização). Os dados gerados, após o pré-processamento, totalizaram 188 linhas com seis atributos, contabilizando 150 lotes aceitos para comercialização, seis rejeitados e 32 denominados intermediários. Os classificadores utilizados foram J48, Random Forest, Classification Via Regression, Naive Bayes, Multilayer Perceptron e IBk. Utilizou-se o filtro Resample para ajustamento dos dados. A técnica empregada para treinamento foi a k-fold, com 10 folds. Para verificar a precisão dos algoritmos foram utilizadas as métricas de Acurácia, Precisão, Recall, F-measure e Área ROC. Com os resultados obtidos determinou-se o melhor algoritmo de aprendizagem de máquina. Verificou-se que o IBk e o J48 obtiveram maior acurácia nos dados, sendo que a técnica de IBk obteve o melhor resultado. O filtro Resample foi importante para resolver o problema do desequilíbrio dos dados. Concluímos ser possível classificar lotes de sementes de sorgo com grande acurácia e precisão através de inteligência artificial e sua técnica de aprendizado de máquina.Universidade Federal Rural do Semi-Árido2023-02-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/1131010.1590/1983-21252023v36n224rcREVISTA CAATINGA; Vol. 36 No. 2 (2023); 471-478Revista Caatinga; v. 36 n. 2 (2023); 471-4781983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/11310/11156Copyright (c) 2023 Revista Caatingainfo:eu-repo/semantics/openAccessRocha, Luciana DiasGadotti, Gizele IngridBernardy, RuanPinheiro, Romario de MesquitaMonteiro, Rita de Cassia Mota2023-07-27T12:06:05Zoai:ojs.periodicos.ufersa.edu.br:article/11310Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2024-04-29T09:47:02.903550Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)true |
dc.title.none.fl_str_mv |
Data mining for ranking sorghum seed lots Mineração de dados no ranqueamento de lotes de sementes de sorgo |
title |
Data mining for ranking sorghum seed lots |
spellingShingle |
Data mining for ranking sorghum seed lots Rocha, Luciana Dias Qualidade Tecnologia de pós-colheita Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial. Quality Post-harvest technology Artificial intelligence. Image processing. Seeds. |
title_short |
Data mining for ranking sorghum seed lots |
title_full |
Data mining for ranking sorghum seed lots |
title_fullStr |
Data mining for ranking sorghum seed lots |
title_full_unstemmed |
Data mining for ranking sorghum seed lots |
title_sort |
Data mining for ranking sorghum seed lots |
author |
Rocha, Luciana Dias |
author_facet |
Rocha, Luciana Dias Gadotti, Gizele Ingrid Bernardy, Ruan Pinheiro, Romario de Mesquita Monteiro, Rita de Cassia Mota |
author_role |
author |
author2 |
Gadotti, Gizele Ingrid Bernardy, Ruan Pinheiro, Romario de Mesquita Monteiro, Rita de Cassia Mota |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Rocha, Luciana Dias Gadotti, Gizele Ingrid Bernardy, Ruan Pinheiro, Romario de Mesquita Monteiro, Rita de Cassia Mota |
dc.subject.por.fl_str_mv |
Qualidade Tecnologia de pós-colheita Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial. Quality Post-harvest technology Artificial intelligence. Image processing. Seeds. |
topic |
Qualidade Tecnologia de pós-colheita Gases de efeito estufa. Manejo do solo. Modelagem. Inteligência artificial. Quality Post-harvest technology Artificial intelligence. Image processing. Seeds. |
description |
The ranking of seed lots is a fundamental process for all companies in the seed industry. This work aims to demonstrate data mining methods for ranking sorghum seed lots during the seed processing through analysis of quality control data. Germination and cold tests were performed to verify the physiological quality of the lots. Seed samples from each lot were evaluated in two moments: post-cleaning and finished product (ready for marketing). The results after pre-processing totaled 188 rows of data with six attributes, encompassing 150 lots accepted for marketing, 6 rejected, and 32 intermediate lots. The classifiers used were J48, Random Forest, Classification Via Regression, Naive Bayes, Multilayer Perceptron, and IBk. The Resample filter was used for adjustment of the data. The k-fold technique was used for training, with ten folds. The metrics of Accuracy, Precision, Recall, F-measure, and ROC Area were used to verify the accuracy of the algorithms. The results obtained were used to determine the best machine-learning algorithm. IBk and J48 presented the highest accuracy of data; the IBk technique presented the best results. The Resample filter was essential for solving the data imbalance problem. Sorghum seed lots can be classified with great accuracy and precision through artificial intelligence and machine learning technique. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/11310 10.1590/1983-21252023v36n224rc |
url |
https://periodicos.ufersa.edu.br/caatinga/article/view/11310 |
identifier_str_mv |
10.1590/1983-21252023v36n224rc |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/11310/11156 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Revista Caatinga info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Revista Caatinga |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
dc.source.none.fl_str_mv |
REVISTA CAATINGA; Vol. 36 No. 2 (2023); 471-478 Revista Caatinga; v. 36 n. 2 (2023); 471-478 1983-2125 0100-316X reponame:Revista Caatinga instname:Universidade Federal Rural do Semi-Árido (UFERSA) instacron:UFERSA |
instname_str |
Universidade Federal Rural do Semi-Árido (UFERSA) |
instacron_str |
UFERSA |
institution |
UFERSA |
reponame_str |
Revista Caatinga |
collection |
Revista Caatinga |
repository.name.fl_str_mv |
Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA) |
repository.mail.fl_str_mv |
patricio@ufersa.edu.br|| caatinga@ufersa.edu.br |
_version_ |
1797674030027767808 |