Problemas de mínimos quadrados: resolução e aplicações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | https://app.uff.br/riuff/handle/1/4174 |
Resumo: | O problema de mínimos quadrados é um problema computacional de primordial importância. O originalmente surgiu da necessidade de se ajustar um modelo matemático linear para observações dadas com o propósito de reduzir a influência de erros nas observações. Trata-se de uma técnica de otimização matemática que procura encontrar o melhor ajuste para um conjunto de dados através da minimização da soma dos quadrados da diferença entre os dados observados e os valores estimados (tais diferenças são chamadas resíduos). Este tipo de problema é muito frequente em ciências experimentais; em problemas geodésicos, como o formulado por Gauss para resolver um problema de demarcação de fronteiras para o governo alemão; problemas estatísticos; processamentos de sinais; fotogrametria; entre outros. Na linguagem da Álgebra Linear, o problema de mínimos quadrados pode ser definido como a solução de um sistema de equações Ax = b sobredeterminado, isto é, com mais equações do que incógnitas. Para resolver esse problema, requer-se conhecimento de diferentes áreas, como por exemplo: alguns conceitos de Álgebra Linear; probabilidade; estatística para analisar os dados; ciência da computação para implementação eficiente de algoritmos e programação matemática para formular e resolver problemas de otimização. Entre as soluções apresentadas para resolver o sistema de equações, foram estudados: o método de equações normais; decomposição em valores singulares e fatoração QR. Para exemplificar, foram feitas aplicações no ajuste de curvas e na área de Estatística, em exemplos de regressão linear simples e múltipla, além de discutir brevemente sobre os problemas de condicionamento e estabilidade. |
id |
UFF-2_05d53d78ebf4a8c24b769eccad22a6c3 |
---|---|
oai_identifier_str |
oai:app.uff.br:1/4174 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
Problemas de mínimos quadrados: resolução e aplicaçõesMínimos quadradosAjuste polinomialRegressão linearMétodos de fatoração matricialÁlgebra linearMínimos quadradosRegressão linearO problema de mínimos quadrados é um problema computacional de primordial importância. O originalmente surgiu da necessidade de se ajustar um modelo matemático linear para observações dadas com o propósito de reduzir a influência de erros nas observações. Trata-se de uma técnica de otimização matemática que procura encontrar o melhor ajuste para um conjunto de dados através da minimização da soma dos quadrados da diferença entre os dados observados e os valores estimados (tais diferenças são chamadas resíduos). Este tipo de problema é muito frequente em ciências experimentais; em problemas geodésicos, como o formulado por Gauss para resolver um problema de demarcação de fronteiras para o governo alemão; problemas estatísticos; processamentos de sinais; fotogrametria; entre outros. Na linguagem da Álgebra Linear, o problema de mínimos quadrados pode ser definido como a solução de um sistema de equações Ax = b sobredeterminado, isto é, com mais equações do que incógnitas. Para resolver esse problema, requer-se conhecimento de diferentes áreas, como por exemplo: alguns conceitos de Álgebra Linear; probabilidade; estatística para analisar os dados; ciência da computação para implementação eficiente de algoritmos e programação matemática para formular e resolver problemas de otimização. Entre as soluções apresentadas para resolver o sistema de equações, foram estudados: o método de equações normais; decomposição em valores singulares e fatoração QR. Para exemplificar, foram feitas aplicações no ajuste de curvas e na área de Estatística, em exemplos de regressão linear simples e múltipla, além de discutir brevemente sobre os problemas de condicionamento e estabilidade.Freitas, Marina Sequeiros Dias deGraça, Ana Beatriz Rodrigues de Andrade2017-08-17T12:13:22Z2017-08-17T12:13:22Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/4174CC-BY-SAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2022-06-25T16:06:29Zoai:app.uff.br:1/4174Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T10:59:04.116451Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Problemas de mínimos quadrados: resolução e aplicações |
title |
Problemas de mínimos quadrados: resolução e aplicações |
spellingShingle |
Problemas de mínimos quadrados: resolução e aplicações Graça, Ana Beatriz Rodrigues de Andrade Mínimos quadrados Ajuste polinomial Regressão linear Métodos de fatoração matricial Álgebra linear Mínimos quadrados Regressão linear |
title_short |
Problemas de mínimos quadrados: resolução e aplicações |
title_full |
Problemas de mínimos quadrados: resolução e aplicações |
title_fullStr |
Problemas de mínimos quadrados: resolução e aplicações |
title_full_unstemmed |
Problemas de mínimos quadrados: resolução e aplicações |
title_sort |
Problemas de mínimos quadrados: resolução e aplicações |
author |
Graça, Ana Beatriz Rodrigues de Andrade |
author_facet |
Graça, Ana Beatriz Rodrigues de Andrade |
author_role |
author |
dc.contributor.none.fl_str_mv |
Freitas, Marina Sequeiros Dias de |
dc.contributor.author.fl_str_mv |
Graça, Ana Beatriz Rodrigues de Andrade |
dc.subject.por.fl_str_mv |
Mínimos quadrados Ajuste polinomial Regressão linear Métodos de fatoração matricial Álgebra linear Mínimos quadrados Regressão linear |
topic |
Mínimos quadrados Ajuste polinomial Regressão linear Métodos de fatoração matricial Álgebra linear Mínimos quadrados Regressão linear |
description |
O problema de mínimos quadrados é um problema computacional de primordial importância. O originalmente surgiu da necessidade de se ajustar um modelo matemático linear para observações dadas com o propósito de reduzir a influência de erros nas observações. Trata-se de uma técnica de otimização matemática que procura encontrar o melhor ajuste para um conjunto de dados através da minimização da soma dos quadrados da diferença entre os dados observados e os valores estimados (tais diferenças são chamadas resíduos). Este tipo de problema é muito frequente em ciências experimentais; em problemas geodésicos, como o formulado por Gauss para resolver um problema de demarcação de fronteiras para o governo alemão; problemas estatísticos; processamentos de sinais; fotogrametria; entre outros. Na linguagem da Álgebra Linear, o problema de mínimos quadrados pode ser definido como a solução de um sistema de equações Ax = b sobredeterminado, isto é, com mais equações do que incógnitas. Para resolver esse problema, requer-se conhecimento de diferentes áreas, como por exemplo: alguns conceitos de Álgebra Linear; probabilidade; estatística para analisar os dados; ciência da computação para implementação eficiente de algoritmos e programação matemática para formular e resolver problemas de otimização. Entre as soluções apresentadas para resolver o sistema de equações, foram estudados: o método de equações normais; decomposição em valores singulares e fatoração QR. Para exemplificar, foram feitas aplicações no ajuste de curvas e na área de Estatística, em exemplos de regressão linear simples e múltipla, além de discutir brevemente sobre os problemas de condicionamento e estabilidade. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2017-08-17T12:13:22Z 2017-08-17T12:13:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://app.uff.br/riuff/handle/1/4174 |
url |
https://app.uff.br/riuff/handle/1/4174 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823627532763136 |