On classical results for discontinuous and constrained differential systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000009v0n |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11089 |
Resumo: | The present work concerns the study of classes of discontinuous differential systems addressing the following topics: global attractors, linearization, and codimension--one singularities for constrained differential systems. The Markus--Yamabe conjecture deals with global stability and it states that if a differentiable system x’=f(x) has a singularity and the Jacobian matrix Df(x) has everywhere eigenvalues with negative real part, then the singularity is a global attractor. This conjecture was proved for planar vector fields of class C^1 and counterexamples were presented in higher dimension. Let Z=(X,Y) be a piecewise linear differential systems separated by one straight line ∑, an extension of the Markus--Yamabe conjecture for Z affirm that if 0 є ∑, Y(0)=0, X(0)≠0, and the Jacobian matrices DX(x) and DY(x) have eigenvalues with negative real part for any xє R^2 then the origin is a global attractor. In this work we prove that about these conditions Z can has one crossing limit cycle. This means that under similar hypotheses to that of the Markus--Yamabe conjecture the origin is not necessarily a global attractor of Z. The Grobman-Hartman Theorem is a classical result on linearization that provide a linear differential system that is topologically equivalent to x’=X(x) around a hyperbolic singularity. Let Z=(X,Y) a discontinuous differential systems defined in R^n, the generic singularities of Z consist of the hyperbolic singularities of X and Y, the hyperbolic singularities of the sliding vector fields, and the tangency--regular points of Z. On linearization for discontinuous differential systems we provide a piecewise linear differential system that is ∑-equivalent to Z, around of the generic singularities, so that the sliding vector fields is also linear. Let A(x) be a nxn matrix valued function, n≥2, and F(x) a vector field defined on R^n. Assuming that A and F are smooth, we define a constrained differential system as a differential system of the form A(x)x’=F(x), where xєR^n. In this thesis we classify the codimension-one singularities of a constrained system defined on R^3. Moreover we provide the respective normal forms in the one parameter space. |
id |
UFG-2_1e0ec17094d5c9384a4203b812189a60 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11089 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Medrado, João Carlos da Rochahttp://lattes.cnpq.br/5021927574622286Llibre, JaumeMedrado, João Carlos da RochaTonon, Durval JoséBuzzi, Claudio AguinaldoTeixeira, Marco AntonioSilva, Paulo Ricardo dahttp://lattes.cnpq.br/3512519571690080Menezes, Lucyjane de Almeida Silva2021-02-08T14:05:45Z2021-02-08T14:05:45Z2019-08-27MENEZES, L. A. S. On classical results for discontinuous and constrained differential systems. 2019. 91 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/11089ark:/38995/0013000009v0nThe present work concerns the study of classes of discontinuous differential systems addressing the following topics: global attractors, linearization, and codimension--one singularities for constrained differential systems. The Markus--Yamabe conjecture deals with global stability and it states that if a differentiable system x’=f(x) has a singularity and the Jacobian matrix Df(x) has everywhere eigenvalues with negative real part, then the singularity is a global attractor. This conjecture was proved for planar vector fields of class C^1 and counterexamples were presented in higher dimension. Let Z=(X,Y) be a piecewise linear differential systems separated by one straight line ∑, an extension of the Markus--Yamabe conjecture for Z affirm that if 0 є ∑, Y(0)=0, X(0)≠0, and the Jacobian matrices DX(x) and DY(x) have eigenvalues with negative real part for any xє R^2 then the origin is a global attractor. In this work we prove that about these conditions Z can has one crossing limit cycle. This means that under similar hypotheses to that of the Markus--Yamabe conjecture the origin is not necessarily a global attractor of Z. The Grobman-Hartman Theorem is a classical result on linearization that provide a linear differential system that is topologically equivalent to x’=X(x) around a hyperbolic singularity. Let Z=(X,Y) a discontinuous differential systems defined in R^n, the generic singularities of Z consist of the hyperbolic singularities of X and Y, the hyperbolic singularities of the sliding vector fields, and the tangency--regular points of Z. On linearization for discontinuous differential systems we provide a piecewise linear differential system that is ∑-equivalent to Z, around of the generic singularities, so that the sliding vector fields is also linear. Let A(x) be a nxn matrix valued function, n≥2, and F(x) a vector field defined on R^n. Assuming that A and F are smooth, we define a constrained differential system as a differential system of the form A(x)x’=F(x), where xєR^n. In this thesis we classify the codimension-one singularities of a constrained system defined on R^3. Moreover we provide the respective normal forms in the one parameter space.Neste trabalho estudamos classes de sistemas diferenciais descontínuos abordando os seguintes temas: atratores globais, linearização e singularidades de codimensão um para sistemas diferenciais com impasse. A conjectura de Markus-Yamabe trata da estabilidade assintótica global e afirma que se um sistema diferencial x’=f(x) tem uma única singularidade e os autovalores da matriz Jacobiana Df(x) tem parte real negativa para todo x, então a singularidade é um atrator global. Esta conjectura foi provada para campos de vetores de classe C^1 no plano e contraexemplos foram apresentados para dimensões maiores. Seja Z=(X,Y) um sistema diferencial linear por partes separado por uma linha reta passando pela origem, a extensão da conjectura de Markus-Yamabe para um sistema diferencial Z afirma que se Y(0)=0, X(0)≠0 e as matrizes Jacobiana DX(x) e DY(x) tem autovalores com parte real negativa em qualquer ponto x então a origem é um atrator global. Neste trabalho nós provamos que sobre essas condições Z pode ter um ciclo limite de costura. Ou seja, sob hipóteses similares às hipóteses da conjectura de Markus-Yamabe, a origem não é, necessariamente, um atrator global. O Teorema de Grobman-Hartman é um resultado clássico em linearização que fornece um sistema diferencial linear topologicamente equivalente a x’=X(x) em torno de uma singularidade hiperbólica. As singularidades genéricas de um sistema diferencial descontínuo Z=(X,Y) definido no espaço de dimensão n, consiste das singularidades hiperbólicas de X e Y, as singularidades hiperbólicas do campo de vetores deslizante e os pontos de tangência-regular. Em linearização para sistemas descontínuos, nós fornecemos um sistema diferencial linear por partes que é ∑-equivalente a Z, em torno das singularidades genéricas, de modo que o campo de vetores deslizante também seja linear. Sejam A(x) uma matriz nxn com n≥2, F(x) um campo vetorial. Supondo que A e F são suaves, nós definimos um sistema diferencial com impasse como um sistema diferencial da forma A(x)x’=F(x). Nesta tese, classificamos as singularidades de codimensão um para os sistemas diferenciais com impasse definidos em R^3 e fornecemos as respectivas formas normais.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2021-02-05T18:57:54Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Lucyjane de Almeida Silva Menezes - 2019.pdf: 1775351 bytes, checksum: 4a1f70e8c1d406d7f5711396c8552f78 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-02-08T14:05:45Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Lucyjane de Almeida Silva Menezes - 2019.pdf: 1775351 bytes, checksum: 4a1f70e8c1d406d7f5711396c8552f78 (MD5)Made available in DSpace on 2021-02-08T14:05:45Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Lucyjane de Almeida Silva Menezes - 2019.pdf: 1775351 bytes, checksum: 4a1f70e8c1d406d7f5711396c8552f78 (MD5) Previous issue date: 2019-08-27Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSistemas descontínuosLinearizaçãoAtrator globalCiclos limiteSstemas com impasseDiscontinuous systemsLinearizationGlobal attractorLimit cyclesConstrained systemsCIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::FISICA MATEMATICAOn classical results for discontinuous and constrained differential systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis66500500500500277881reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/28211ffd-f2c9-4f27-b3b8-4950c1386183/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/e32b95e4-3ecf-46ef-8753-2cd96e9320a6/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Lucyjane de Almeida Silva Menezes - 2019.pdfTese - Lucyjane de Almeida Silva Menezes - 2019.pdfapplication/pdf1775351http://repositorio.bc.ufg.br/tede/bitstreams/eecec337-d87a-46c9-9626-b16d2dd1cf90/download4a1f70e8c1d406d7f5711396c8552f78MD53tede/110892021-02-08 11:05:46.016http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11089http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-02-08T14:05:46Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
On classical results for discontinuous and constrained differential systems |
title |
On classical results for discontinuous and constrained differential systems |
spellingShingle |
On classical results for discontinuous and constrained differential systems Menezes, Lucyjane de Almeida Silva Sistemas descontínuos Linearização Atrator global Ciclos limite Sstemas com impasse Discontinuous systems Linearization Global attractor Limit cycles Constrained systems CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::FISICA MATEMATICA |
title_short |
On classical results for discontinuous and constrained differential systems |
title_full |
On classical results for discontinuous and constrained differential systems |
title_fullStr |
On classical results for discontinuous and constrained differential systems |
title_full_unstemmed |
On classical results for discontinuous and constrained differential systems |
title_sort |
On classical results for discontinuous and constrained differential systems |
author |
Menezes, Lucyjane de Almeida Silva |
author_facet |
Menezes, Lucyjane de Almeida Silva |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Medrado, João Carlos da Rocha |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5021927574622286 |
dc.contributor.advisor-co1.fl_str_mv |
Llibre, Jaume |
dc.contributor.referee1.fl_str_mv |
Medrado, João Carlos da Rocha |
dc.contributor.referee2.fl_str_mv |
Tonon, Durval José |
dc.contributor.referee3.fl_str_mv |
Buzzi, Claudio Aguinaldo |
dc.contributor.referee4.fl_str_mv |
Teixeira, Marco Antonio |
dc.contributor.referee5.fl_str_mv |
Silva, Paulo Ricardo da |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3512519571690080 |
dc.contributor.author.fl_str_mv |
Menezes, Lucyjane de Almeida Silva |
contributor_str_mv |
Medrado, João Carlos da Rocha Llibre, Jaume Medrado, João Carlos da Rocha Tonon, Durval José Buzzi, Claudio Aguinaldo Teixeira, Marco Antonio Silva, Paulo Ricardo da |
dc.subject.por.fl_str_mv |
Sistemas descontínuos Linearização Atrator global Ciclos limite Sstemas com impasse |
topic |
Sistemas descontínuos Linearização Atrator global Ciclos limite Sstemas com impasse Discontinuous systems Linearization Global attractor Limit cycles Constrained systems CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::FISICA MATEMATICA |
dc.subject.eng.fl_str_mv |
Discontinuous systems Linearization Global attractor Limit cycles Constrained systems |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::FISICA MATEMATICA |
description |
The present work concerns the study of classes of discontinuous differential systems addressing the following topics: global attractors, linearization, and codimension--one singularities for constrained differential systems. The Markus--Yamabe conjecture deals with global stability and it states that if a differentiable system x’=f(x) has a singularity and the Jacobian matrix Df(x) has everywhere eigenvalues with negative real part, then the singularity is a global attractor. This conjecture was proved for planar vector fields of class C^1 and counterexamples were presented in higher dimension. Let Z=(X,Y) be a piecewise linear differential systems separated by one straight line ∑, an extension of the Markus--Yamabe conjecture for Z affirm that if 0 є ∑, Y(0)=0, X(0)≠0, and the Jacobian matrices DX(x) and DY(x) have eigenvalues with negative real part for any xє R^2 then the origin is a global attractor. In this work we prove that about these conditions Z can has one crossing limit cycle. This means that under similar hypotheses to that of the Markus--Yamabe conjecture the origin is not necessarily a global attractor of Z. The Grobman-Hartman Theorem is a classical result on linearization that provide a linear differential system that is topologically equivalent to x’=X(x) around a hyperbolic singularity. Let Z=(X,Y) a discontinuous differential systems defined in R^n, the generic singularities of Z consist of the hyperbolic singularities of X and Y, the hyperbolic singularities of the sliding vector fields, and the tangency--regular points of Z. On linearization for discontinuous differential systems we provide a piecewise linear differential system that is ∑-equivalent to Z, around of the generic singularities, so that the sliding vector fields is also linear. Let A(x) be a nxn matrix valued function, n≥2, and F(x) a vector field defined on R^n. Assuming that A and F are smooth, we define a constrained differential system as a differential system of the form A(x)x’=F(x), where xєR^n. In this thesis we classify the codimension-one singularities of a constrained system defined on R^3. Moreover we provide the respective normal forms in the one parameter space. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-08-27 |
dc.date.accessioned.fl_str_mv |
2021-02-08T14:05:45Z |
dc.date.available.fl_str_mv |
2021-02-08T14:05:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MENEZES, L. A. S. On classical results for discontinuous and constrained differential systems. 2019. 91 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11089 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000009v0n |
identifier_str_mv |
MENEZES, L. A. S. On classical results for discontinuous and constrained differential systems. 2019. 91 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/0013000009v0n |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11089 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.program.fl_str_mv |
66 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
27 |
dc.relation.cnpq.fl_str_mv |
788 |
dc.relation.sponsorship.fl_str_mv |
1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/28211ffd-f2c9-4f27-b3b8-4950c1386183/download http://repositorio.bc.ufg.br/tede/bitstreams/e32b95e4-3ecf-46ef-8753-2cd96e9320a6/download http://repositorio.bc.ufg.br/tede/bitstreams/eecec337-d87a-46c9-9626-b16d2dd1cf90/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 4a1f70e8c1d406d7f5711396c8552f78 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172615574126592 |