On classical results for discontinuous and constrained differential systems

Detalhes bibliográficos
Autor(a) principal: Menezes, Lucyjane de Almeida Silva
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000009v0n
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/11089
Resumo: The present work concerns the study of classes of discontinuous differential systems addressing the following topics: global attractors, linearization, and codimension--one singularities for constrained differential systems. The Markus--Yamabe conjecture deals with global stability and it states that if a differentiable system x’=f(x) has a singularity and the Jacobian matrix Df(x) has everywhere eigenvalues with negative real part, then the singularity is a global attractor. This conjecture was proved for planar vector fields of class C^1 and counterexamples were presented in higher dimension. Let Z=(X,Y) be a piecewise linear differential systems separated by one straight line ∑, an extension of the Markus--Yamabe conjecture for Z affirm that if 0 є ∑, Y(0)=0, X(0)≠0, and the Jacobian matrices DX(x) and DY(x) have eigenvalues with negative real part for any xє R^2 then the origin is a global attractor. In this work we prove that about these conditions Z can has one crossing limit cycle. This means that under similar hypotheses to that of the Markus--Yamabe conjecture the origin is not necessarily a global attractor of Z. The Grobman-Hartman Theorem is a classical result on linearization that provide a linear differential system that is topologically equivalent to x’=X(x) around a hyperbolic singularity. Let Z=(X,Y) a discontinuous differential systems defined in R^n, the generic singularities of Z consist of the hyperbolic singularities of X and Y, the hyperbolic singularities of the sliding vector fields, and the tangency--regular points of Z. On linearization for discontinuous differential systems we provide a piecewise linear differential system that is ∑-equivalent to Z, around of the generic singularities, so that the sliding vector fields is also linear. Let A(x) be a nxn matrix valued function, n≥2, and F(x) a vector field defined on R^n. Assuming that A and F are smooth, we define a constrained differential system as a differential system of the form A(x)x’=F(x), where xєR^n. In this thesis we classify the codimension-one singularities of a constrained system defined on R^3. Moreover we provide the respective normal forms in the one parameter space.
id UFG-2_1e0ec17094d5c9384a4203b812189a60
oai_identifier_str oai:repositorio.bc.ufg.br:tede/11089
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Medrado, João Carlos da Rochahttp://lattes.cnpq.br/5021927574622286Llibre, JaumeMedrado, João Carlos da RochaTonon, Durval JoséBuzzi, Claudio AguinaldoTeixeira, Marco AntonioSilva, Paulo Ricardo dahttp://lattes.cnpq.br/3512519571690080Menezes, Lucyjane de Almeida Silva2021-02-08T14:05:45Z2021-02-08T14:05:45Z2019-08-27MENEZES, L. A. S. On classical results for discontinuous and constrained differential systems. 2019. 91 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/11089ark:/38995/0013000009v0nThe present work concerns the study of classes of discontinuous differential systems addressing the following topics: global attractors, linearization, and codimension--one singularities for constrained differential systems. The Markus--Yamabe conjecture deals with global stability and it states that if a differentiable system x’=f(x) has a singularity and the Jacobian matrix Df(x) has everywhere eigenvalues with negative real part, then the singularity is a global attractor. This conjecture was proved for planar vector fields of class C^1 and counterexamples were presented in higher dimension. Let Z=(X,Y) be a piecewise linear differential systems separated by one straight line ∑, an extension of the Markus--Yamabe conjecture for Z affirm that if 0 є ∑, Y(0)=0, X(0)≠0, and the Jacobian matrices DX(x) and DY(x) have eigenvalues with negative real part for any xє R^2 then the origin is a global attractor. In this work we prove that about these conditions Z can has one crossing limit cycle. This means that under similar hypotheses to that of the Markus--Yamabe conjecture the origin is not necessarily a global attractor of Z. The Grobman-Hartman Theorem is a classical result on linearization that provide a linear differential system that is topologically equivalent to x’=X(x) around a hyperbolic singularity. Let Z=(X,Y) a discontinuous differential systems defined in R^n, the generic singularities of Z consist of the hyperbolic singularities of X and Y, the hyperbolic singularities of the sliding vector fields, and the tangency--regular points of Z. On linearization for discontinuous differential systems we provide a piecewise linear differential system that is ∑-equivalent to Z, around of the generic singularities, so that the sliding vector fields is also linear. Let A(x) be a nxn matrix valued function, n≥2, and F(x) a vector field defined on R^n. Assuming that A and F are smooth, we define a constrained differential system as a differential system of the form A(x)x’=F(x), where xєR^n. In this thesis we classify the codimension-one singularities of a constrained system defined on R^3. Moreover we provide the respective normal forms in the one parameter space.Neste trabalho estudamos classes de sistemas diferenciais descontínuos abordando os seguintes temas: atratores globais, linearização e singularidades de codimensão um para sistemas diferenciais com impasse. A conjectura de Markus-Yamabe trata da estabilidade assintótica global e afirma que se um sistema diferencial x’=f(x) tem uma única singularidade e os autovalores da matriz Jacobiana Df(x) tem parte real negativa para todo x, então a singularidade é um atrator global. Esta conjectura foi provada para campos de vetores de classe C^1 no plano e contraexemplos foram apresentados para dimensões maiores. Seja Z=(X,Y) um sistema diferencial linear por partes separado por uma linha reta passando pela origem, a extensão da conjectura de Markus-Yamabe para um sistema diferencial Z afirma que se Y(0)=0, X(0)≠0 e as matrizes Jacobiana DX(x) e DY(x) tem autovalores com parte real negativa em qualquer ponto x então a origem é um atrator global. Neste trabalho nós provamos que sobre essas condições Z pode ter um ciclo limite de costura. Ou seja, sob hipóteses similares às hipóteses da conjectura de Markus-Yamabe, a origem não é, necessariamente, um atrator global. O Teorema de Grobman-Hartman é um resultado clássico em linearização que fornece um sistema diferencial linear topologicamente equivalente a x’=X(x) em torno de uma singularidade hiperbólica. As singularidades genéricas de um sistema diferencial descontínuo Z=(X,Y) definido no espaço de dimensão n, consiste das singularidades hiperbólicas de X e Y, as singularidades hiperbólicas do campo de vetores deslizante e os pontos de tangência-regular. Em linearização para sistemas descontínuos, nós fornecemos um sistema diferencial linear por partes que é ∑-equivalente a Z, em torno das singularidades genéricas, de modo que o campo de vetores deslizante também seja linear. Sejam A(x) uma matriz nxn com n≥2, F(x) um campo vetorial. Supondo que A e F são suaves, nós definimos um sistema diferencial com impasse como um sistema diferencial da forma A(x)x’=F(x). Nesta tese, classificamos as singularidades de codimensão um para os sistemas diferenciais com impasse definidos em R^3 e fornecemos as respectivas formas normais.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2021-02-05T18:57:54Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Lucyjane de Almeida Silva Menezes - 2019.pdf: 1775351 bytes, checksum: 4a1f70e8c1d406d7f5711396c8552f78 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-02-08T14:05:45Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Lucyjane de Almeida Silva Menezes - 2019.pdf: 1775351 bytes, checksum: 4a1f70e8c1d406d7f5711396c8552f78 (MD5)Made available in DSpace on 2021-02-08T14:05:45Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Lucyjane de Almeida Silva Menezes - 2019.pdf: 1775351 bytes, checksum: 4a1f70e8c1d406d7f5711396c8552f78 (MD5) Previous issue date: 2019-08-27Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSistemas descontínuosLinearizaçãoAtrator globalCiclos limiteSstemas com impasseDiscontinuous systemsLinearizationGlobal attractorLimit cyclesConstrained systemsCIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::FISICA MATEMATICAOn classical results for discontinuous and constrained differential systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis66500500500500277881reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/28211ffd-f2c9-4f27-b3b8-4950c1386183/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/e32b95e4-3ecf-46ef-8753-2cd96e9320a6/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Lucyjane de Almeida Silva Menezes - 2019.pdfTese - Lucyjane de Almeida Silva Menezes - 2019.pdfapplication/pdf1775351http://repositorio.bc.ufg.br/tede/bitstreams/eecec337-d87a-46c9-9626-b16d2dd1cf90/download4a1f70e8c1d406d7f5711396c8552f78MD53tede/110892021-02-08 11:05:46.016http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11089http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-02-08T14:05:46Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv On classical results for discontinuous and constrained differential systems
title On classical results for discontinuous and constrained differential systems
spellingShingle On classical results for discontinuous and constrained differential systems
Menezes, Lucyjane de Almeida Silva
Sistemas descontínuos
Linearização
Atrator global
Ciclos limite
Sstemas com impasse
Discontinuous systems
Linearization
Global attractor
Limit cycles
Constrained systems
CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::FISICA MATEMATICA
title_short On classical results for discontinuous and constrained differential systems
title_full On classical results for discontinuous and constrained differential systems
title_fullStr On classical results for discontinuous and constrained differential systems
title_full_unstemmed On classical results for discontinuous and constrained differential systems
title_sort On classical results for discontinuous and constrained differential systems
author Menezes, Lucyjane de Almeida Silva
author_facet Menezes, Lucyjane de Almeida Silva
author_role author
dc.contributor.advisor1.fl_str_mv Medrado, João Carlos da Rocha
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5021927574622286
dc.contributor.advisor-co1.fl_str_mv Llibre, Jaume
dc.contributor.referee1.fl_str_mv Medrado, João Carlos da Rocha
dc.contributor.referee2.fl_str_mv Tonon, Durval José
dc.contributor.referee3.fl_str_mv Buzzi, Claudio Aguinaldo
dc.contributor.referee4.fl_str_mv Teixeira, Marco Antonio
dc.contributor.referee5.fl_str_mv Silva, Paulo Ricardo da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3512519571690080
dc.contributor.author.fl_str_mv Menezes, Lucyjane de Almeida Silva
contributor_str_mv Medrado, João Carlos da Rocha
Llibre, Jaume
Medrado, João Carlos da Rocha
Tonon, Durval José
Buzzi, Claudio Aguinaldo
Teixeira, Marco Antonio
Silva, Paulo Ricardo da
dc.subject.por.fl_str_mv Sistemas descontínuos
Linearização
Atrator global
Ciclos limite
Sstemas com impasse
topic Sistemas descontínuos
Linearização
Atrator global
Ciclos limite
Sstemas com impasse
Discontinuous systems
Linearization
Global attractor
Limit cycles
Constrained systems
CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::FISICA MATEMATICA
dc.subject.eng.fl_str_mv Discontinuous systems
Linearization
Global attractor
Limit cycles
Constrained systems
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::FISICA MATEMATICA
description The present work concerns the study of classes of discontinuous differential systems addressing the following topics: global attractors, linearization, and codimension--one singularities for constrained differential systems. The Markus--Yamabe conjecture deals with global stability and it states that if a differentiable system x’=f(x) has a singularity and the Jacobian matrix Df(x) has everywhere eigenvalues with negative real part, then the singularity is a global attractor. This conjecture was proved for planar vector fields of class C^1 and counterexamples were presented in higher dimension. Let Z=(X,Y) be a piecewise linear differential systems separated by one straight line ∑, an extension of the Markus--Yamabe conjecture for Z affirm that if 0 є ∑, Y(0)=0, X(0)≠0, and the Jacobian matrices DX(x) and DY(x) have eigenvalues with negative real part for any xє R^2 then the origin is a global attractor. In this work we prove that about these conditions Z can has one crossing limit cycle. This means that under similar hypotheses to that of the Markus--Yamabe conjecture the origin is not necessarily a global attractor of Z. The Grobman-Hartman Theorem is a classical result on linearization that provide a linear differential system that is topologically equivalent to x’=X(x) around a hyperbolic singularity. Let Z=(X,Y) a discontinuous differential systems defined in R^n, the generic singularities of Z consist of the hyperbolic singularities of X and Y, the hyperbolic singularities of the sliding vector fields, and the tangency--regular points of Z. On linearization for discontinuous differential systems we provide a piecewise linear differential system that is ∑-equivalent to Z, around of the generic singularities, so that the sliding vector fields is also linear. Let A(x) be a nxn matrix valued function, n≥2, and F(x) a vector field defined on R^n. Assuming that A and F are smooth, we define a constrained differential system as a differential system of the form A(x)x’=F(x), where xєR^n. In this thesis we classify the codimension-one singularities of a constrained system defined on R^3. Moreover we provide the respective normal forms in the one parameter space.
publishDate 2019
dc.date.issued.fl_str_mv 2019-08-27
dc.date.accessioned.fl_str_mv 2021-02-08T14:05:45Z
dc.date.available.fl_str_mv 2021-02-08T14:05:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MENEZES, L. A. S. On classical results for discontinuous and constrained differential systems. 2019. 91 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/11089
dc.identifier.dark.fl_str_mv ark:/38995/0013000009v0n
identifier_str_mv MENEZES, L. A. S. On classical results for discontinuous and constrained differential systems. 2019. 91 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/0013000009v0n
url http://repositorio.bc.ufg.br/tede/handle/tede/11089
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv 66
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 27
dc.relation.cnpq.fl_str_mv 788
dc.relation.sponsorship.fl_str_mv 1
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/28211ffd-f2c9-4f27-b3b8-4950c1386183/download
http://repositorio.bc.ufg.br/tede/bitstreams/e32b95e4-3ecf-46ef-8753-2cd96e9320a6/download
http://repositorio.bc.ufg.br/tede/bitstreams/eecec337-d87a-46c9-9626-b16d2dd1cf90/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
4a1f70e8c1d406d7f5711396c8552f78
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172615574126592