Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000005p67 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11767 |
Resumo: | Through the computerized systems of universities, it is possible to have access to a lot of student data, from demographic, socioeconomic, admission, egress and performance data. Transforming these data into useful information for the academic society, both management and students, is a challenge. One of the ways to identify the impact factors on the academic performance of higher-level students is Educational Data Mining. Based on the results, it is possible to make academic, managerial and administrative decisions based on evidence. This study aims, through the use of Educational Data Mining techniques, to identify which factors impact the performance of higher education students in computing courses, having as a case study, the computing courses of the Instituto de Informática da Universidade Federal de Goiás, with a database of 2.501 incoming students between the years 2009 to 2019. Through Systematic Literature Review, the main algorithms used for educational data mining (analysis and prediction) were identified. The data base went through the data mining process (selection, pre-processing, data transformation, datamining), where a data set was initially defined, which allowed the generation of graphical views of various aspects of the profile of the data students. This dataset was then adjusted to be applied to the algorithms identified in the SLR, where it was possible to define a data model. With the application of these algorithms to the data model, it was possible to identify the algorithms that had the best performance (accuracy). And also analyze, through feature importance techniques, such as SHAP and correlation maps between Heatmaps attributes, which factors had the greatest impact on student performance. |
id |
UFG-2_4f2115d2d3fa2bbdb8eef72c709ccd5f |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11767 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Brancher, Jacques Duíliohttp://lattes.cnpq.br/7909976127880843Brancher, Jacques DuílioFerreira, Deller JamesBarros , Rodolfo Miranda dehttp://lattes.cnpq.br/7764136990716932Oliveira, Michelle Christiane da Silva2021-11-24T11:21:13Z2021-11-24T11:21:13Z2021-09-23OLIVEIRA, M. C. S. Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação. 2021. 81 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11767ark:/38995/0013000005p67Through the computerized systems of universities, it is possible to have access to a lot of student data, from demographic, socioeconomic, admission, egress and performance data. Transforming these data into useful information for the academic society, both management and students, is a challenge. One of the ways to identify the impact factors on the academic performance of higher-level students is Educational Data Mining. Based on the results, it is possible to make academic, managerial and administrative decisions based on evidence. This study aims, through the use of Educational Data Mining techniques, to identify which factors impact the performance of higher education students in computing courses, having as a case study, the computing courses of the Instituto de Informática da Universidade Federal de Goiás, with a database of 2.501 incoming students between the years 2009 to 2019. Through Systematic Literature Review, the main algorithms used for educational data mining (analysis and prediction) were identified. The data base went through the data mining process (selection, pre-processing, data transformation, datamining), where a data set was initially defined, which allowed the generation of graphical views of various aspects of the profile of the data students. This dataset was then adjusted to be applied to the algorithms identified in the SLR, where it was possible to define a data model. With the application of these algorithms to the data model, it was possible to identify the algorithms that had the best performance (accuracy). And also analyze, through feature importance techniques, such as SHAP and correlation maps between Heatmaps attributes, which factors had the greatest impact on student performance.Atráves dos sistemas informatizados das universidades é possível ter acesso muitos dados dos estudantes, desde dados demográficos, socioeconômicos, de ingresso, egresso edesempenho. Transformar esses dados em informações úteis para a sociedade acadêmica,tanto gestão, quanto estudantes, é um desafio. Uma das formas de identificar os fatoresde impacto no desempenho acadêmico dos estudades do nível superior é a Mineração deDados Educacionais. A partir dos resultados é possível tomar decisões acadêmicas, gerenciais e administrativas baseada em evidências. Este estudo tem por objetivo, através dautilização de técnicas de Mineração de Dados Educacionais, identificar quais os fatores impactam o desempenho dos estudantes do ensino superior dos cursos de computação, tendo como estudo de caso, os cursos de computação do Instituto de Informática da Uni-versidade Federal de Goiás, com uma base de dados, de 2.501 estudantes ingressantes, entre os anos de 2009 à 2019. Através de Revisão Sistemática da Literatura (RSL), foi identificado os principais algoritmos utilizados para mineração de dados educacionais (análise e predição). A base de dados, passou pelo processo de mineração de dados (seleção, pré-processamento, transformação de dados, mineração de dados), onde foi inicialmente definido um conjunto de dados, que permitiu gerar visualizações gráficas de vários aspectos do perfil dos estudantes. Esse conjunto de dados, foi então ajustado para que fossem aplicados aos algoritmos identificados na RSL, onde foi possível definir um modelo de dados. Com a aplicação desses algoritmos ao modelo de dados, pôde-se identificar os algoritmos que tiveram melhor perfomance (acurácia). E também analisar através de técnicas de feature importance, como SHAP e mapas de correlação entre atributos Heatmap, quais osfatores que representaram maior impacto no desempenho dos estudantes.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2021-11-23T22:05:13Z No. of bitstreams: 2 Dissertacão - Michelle Christiane da Silva Oliveira - 2021.pdf: 3829999 bytes, checksum: f46b00a4e34d58ee9096cee6b370dd48 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-11-24T11:21:13Z (GMT) No. of bitstreams: 2 Dissertacão - Michelle Christiane da Silva Oliveira - 2021.pdf: 3829999 bytes, checksum: f46b00a4e34d58ee9096cee6b370dd48 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2021-11-24T11:21:13Z (GMT). No. of bitstreams: 2 Dissertacão - Michelle Christiane da Silva Oliveira - 2021.pdf: 3829999 bytes, checksum: f46b00a4e34d58ee9096cee6b370dd48 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-09-23OutroporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMineração de dados educacionaisFatores de impactoEnsino superiorEducational data miningFactors affecting academic performanceHigher educationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOFatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computaçãoImpact factors on academic performance: a case study in computing coursesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis20500500500500261845reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertacão - Michelle Christiane da Silva Oliveira - 2021.pdfDissertacão - Michelle Christiane da Silva Oliveira - 2021.pdfapplication/pdf3829999http://repositorio.bc.ufg.br/tede/bitstreams/da559904-2580-4d92-a77c-f9f2d9d3c425/downloadf46b00a4e34d58ee9096cee6b370dd48MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/a263c017-8326-4ce2-8094-219505a25977/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/7b3fa22b-26f2-43d1-a6b1-1ff66c5feb48/download4460e5956bc1d1639be9ae6146a50347MD52tede/117672021-11-24 08:21:13.769http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11767http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-11-24T11:21:13Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação |
dc.title.alternative.eng.fl_str_mv |
Impact factors on academic performance: a case study in computing courses |
title |
Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação |
spellingShingle |
Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação Oliveira, Michelle Christiane da Silva Mineração de dados educacionais Fatores de impacto Ensino superior Educational data mining Factors affecting academic performance Higher education CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação |
title_full |
Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação |
title_fullStr |
Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação |
title_full_unstemmed |
Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação |
title_sort |
Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação |
author |
Oliveira, Michelle Christiane da Silva |
author_facet |
Oliveira, Michelle Christiane da Silva |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Brancher, Jacques Duílio |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7909976127880843 |
dc.contributor.referee1.fl_str_mv |
Brancher, Jacques Duílio |
dc.contributor.referee2.fl_str_mv |
Ferreira, Deller James |
dc.contributor.referee3.fl_str_mv |
Barros , Rodolfo Miranda de |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7764136990716932 |
dc.contributor.author.fl_str_mv |
Oliveira, Michelle Christiane da Silva |
contributor_str_mv |
Brancher, Jacques Duílio Brancher, Jacques Duílio Ferreira, Deller James Barros , Rodolfo Miranda de |
dc.subject.por.fl_str_mv |
Mineração de dados educacionais Fatores de impacto Ensino superior |
topic |
Mineração de dados educacionais Fatores de impacto Ensino superior Educational data mining Factors affecting academic performance Higher education CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Educational data mining Factors affecting academic performance Higher education |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Through the computerized systems of universities, it is possible to have access to a lot of student data, from demographic, socioeconomic, admission, egress and performance data. Transforming these data into useful information for the academic society, both management and students, is a challenge. One of the ways to identify the impact factors on the academic performance of higher-level students is Educational Data Mining. Based on the results, it is possible to make academic, managerial and administrative decisions based on evidence. This study aims, through the use of Educational Data Mining techniques, to identify which factors impact the performance of higher education students in computing courses, having as a case study, the computing courses of the Instituto de Informática da Universidade Federal de Goiás, with a database of 2.501 incoming students between the years 2009 to 2019. Through Systematic Literature Review, the main algorithms used for educational data mining (analysis and prediction) were identified. The data base went through the data mining process (selection, pre-processing, data transformation, datamining), where a data set was initially defined, which allowed the generation of graphical views of various aspects of the profile of the data students. This dataset was then adjusted to be applied to the algorithms identified in the SLR, where it was possible to define a data model. With the application of these algorithms to the data model, it was possible to identify the algorithms that had the best performance (accuracy). And also analyze, through feature importance techniques, such as SHAP and correlation maps between Heatmaps attributes, which factors had the greatest impact on student performance. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-11-24T11:21:13Z |
dc.date.available.fl_str_mv |
2021-11-24T11:21:13Z |
dc.date.issued.fl_str_mv |
2021-09-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
OLIVEIRA, M. C. S. Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação. 2021. 81 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11767 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000005p67 |
identifier_str_mv |
OLIVEIRA, M. C. S. Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação. 2021. 81 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021. ark:/38995/0013000005p67 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11767 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
20 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
26 |
dc.relation.cnpq.fl_str_mv |
184 |
dc.relation.sponsorship.fl_str_mv |
5 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/da559904-2580-4d92-a77c-f9f2d9d3c425/download http://repositorio.bc.ufg.br/tede/bitstreams/a263c017-8326-4ce2-8094-219505a25977/download http://repositorio.bc.ufg.br/tede/bitstreams/7b3fa22b-26f2-43d1-a6b1-1ff66c5feb48/download |
bitstream.checksum.fl_str_mv |
f46b00a4e34d58ee9096cee6b370dd48 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172569611894784 |