Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação

Detalhes bibliográficos
Autor(a) principal: Oliveira, Michelle Christiane da Silva
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000005p67
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/11767
Resumo: Through the computerized systems of universities, it is possible to have access to a lot of student data, from demographic, socioeconomic, admission, egress and performance data. Transforming these data into useful information for the academic society, both management and students, is a challenge. One of the ways to identify the impact factors on the academic performance of higher-level students is Educational Data Mining. Based on the results, it is possible to make academic, managerial and administrative decisions based on evidence. This study aims, through the use of Educational Data Mining techniques, to identify which factors impact the performance of higher education students in computing courses, having as a case study, the computing courses of the Instituto de Informática da Universidade Federal de Goiás, with a database of 2.501 incoming students between the years 2009 to 2019. Through Systematic Literature Review, the main algorithms used for educational data mining (analysis and prediction) were identified. The data base went through the data mining process (selection, pre-processing, data transformation, datamining), where a data set was initially defined, which allowed the generation of graphical views of various aspects of the profile of the data students. This dataset was then adjusted to be applied to the algorithms identified in the SLR, where it was possible to define a data model. With the application of these algorithms to the data model, it was possible to identify the algorithms that had the best performance (accuracy). And also analyze, through feature importance techniques, such as SHAP and correlation maps between Heatmaps attributes, which factors had the greatest impact on student performance.
id UFG-2_4f2115d2d3fa2bbdb8eef72c709ccd5f
oai_identifier_str oai:repositorio.bc.ufg.br:tede/11767
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Brancher, Jacques Duíliohttp://lattes.cnpq.br/7909976127880843Brancher, Jacques DuílioFerreira, Deller JamesBarros , Rodolfo Miranda dehttp://lattes.cnpq.br/7764136990716932Oliveira, Michelle Christiane da Silva2021-11-24T11:21:13Z2021-11-24T11:21:13Z2021-09-23OLIVEIRA, M. C. S. Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação. 2021. 81 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11767ark:/38995/0013000005p67Through the computerized systems of universities, it is possible to have access to a lot of student data, from demographic, socioeconomic, admission, egress and performance data. Transforming these data into useful information for the academic society, both management and students, is a challenge. One of the ways to identify the impact factors on the academic performance of higher-level students is Educational Data Mining. Based on the results, it is possible to make academic, managerial and administrative decisions based on evidence. This study aims, through the use of Educational Data Mining techniques, to identify which factors impact the performance of higher education students in computing courses, having as a case study, the computing courses of the Instituto de Informática da Universidade Federal de Goiás, with a database of 2.501 incoming students between the years 2009 to 2019. Through Systematic Literature Review, the main algorithms used for educational data mining (analysis and prediction) were identified. The data base went through the data mining process (selection, pre-processing, data transformation, datamining), where a data set was initially defined, which allowed the generation of graphical views of various aspects of the profile of the data students. This dataset was then adjusted to be applied to the algorithms identified in the SLR, where it was possible to define a data model. With the application of these algorithms to the data model, it was possible to identify the algorithms that had the best performance (accuracy). And also analyze, through feature importance techniques, such as SHAP and correlation maps between Heatmaps attributes, which factors had the greatest impact on student performance.Atráves dos sistemas informatizados das universidades é possível ter acesso muitos dados dos estudantes, desde dados demográficos, socioeconômicos, de ingresso, egresso edesempenho. Transformar esses dados em informações úteis para a sociedade acadêmica,tanto gestão, quanto estudantes, é um desafio. Uma das formas de identificar os fatoresde impacto no desempenho acadêmico dos estudades do nível superior é a Mineração deDados Educacionais. A partir dos resultados é possível tomar decisões acadêmicas, gerenciais e administrativas baseada em evidências. Este estudo tem por objetivo, através dautilização de técnicas de Mineração de Dados Educacionais, identificar quais os fatores impactam o desempenho dos estudantes do ensino superior dos cursos de computação, tendo como estudo de caso, os cursos de computação do Instituto de Informática da Uni-versidade Federal de Goiás, com uma base de dados, de 2.501 estudantes ingressantes, entre os anos de 2009 à 2019. Através de Revisão Sistemática da Literatura (RSL), foi identificado os principais algoritmos utilizados para mineração de dados educacionais (análise e predição). A base de dados, passou pelo processo de mineração de dados (seleção, pré-processamento, transformação de dados, mineração de dados), onde foi inicialmente definido um conjunto de dados, que permitiu gerar visualizações gráficas de vários aspectos do perfil dos estudantes. Esse conjunto de dados, foi então ajustado para que fossem aplicados aos algoritmos identificados na RSL, onde foi possível definir um modelo de dados. Com a aplicação desses algoritmos ao modelo de dados, pôde-se identificar os algoritmos que tiveram melhor perfomance (acurácia). E também analisar através de técnicas de feature importance, como SHAP e mapas de correlação entre atributos Heatmap, quais osfatores que representaram maior impacto no desempenho dos estudantes.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2021-11-23T22:05:13Z No. of bitstreams: 2 Dissertacão - Michelle Christiane da Silva Oliveira - 2021.pdf: 3829999 bytes, checksum: f46b00a4e34d58ee9096cee6b370dd48 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-11-24T11:21:13Z (GMT) No. of bitstreams: 2 Dissertacão - Michelle Christiane da Silva Oliveira - 2021.pdf: 3829999 bytes, checksum: f46b00a4e34d58ee9096cee6b370dd48 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2021-11-24T11:21:13Z (GMT). No. of bitstreams: 2 Dissertacão - Michelle Christiane da Silva Oliveira - 2021.pdf: 3829999 bytes, checksum: f46b00a4e34d58ee9096cee6b370dd48 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-09-23OutroporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMineração de dados educacionaisFatores de impactoEnsino superiorEducational data miningFactors affecting academic performanceHigher educationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOFatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computaçãoImpact factors on academic performance: a case study in computing coursesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis20500500500500261845reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertacão - Michelle Christiane da Silva Oliveira - 2021.pdfDissertacão - Michelle Christiane da Silva Oliveira - 2021.pdfapplication/pdf3829999http://repositorio.bc.ufg.br/tede/bitstreams/da559904-2580-4d92-a77c-f9f2d9d3c425/downloadf46b00a4e34d58ee9096cee6b370dd48MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/a263c017-8326-4ce2-8094-219505a25977/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/7b3fa22b-26f2-43d1-a6b1-1ff66c5feb48/download4460e5956bc1d1639be9ae6146a50347MD52tede/117672021-11-24 08:21:13.769http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11767http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-11-24T11:21:13Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
dc.title.alternative.eng.fl_str_mv Impact factors on academic performance: a case study in computing courses
title Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
spellingShingle Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
Oliveira, Michelle Christiane da Silva
Mineração de dados educacionais
Fatores de impacto
Ensino superior
Educational data mining
Factors affecting academic performance
Higher education
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
title_full Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
title_fullStr Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
title_full_unstemmed Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
title_sort Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação
author Oliveira, Michelle Christiane da Silva
author_facet Oliveira, Michelle Christiane da Silva
author_role author
dc.contributor.advisor1.fl_str_mv Brancher, Jacques Duílio
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7909976127880843
dc.contributor.referee1.fl_str_mv Brancher, Jacques Duílio
dc.contributor.referee2.fl_str_mv Ferreira, Deller James
dc.contributor.referee3.fl_str_mv Barros , Rodolfo Miranda de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7764136990716932
dc.contributor.author.fl_str_mv Oliveira, Michelle Christiane da Silva
contributor_str_mv Brancher, Jacques Duílio
Brancher, Jacques Duílio
Ferreira, Deller James
Barros , Rodolfo Miranda de
dc.subject.por.fl_str_mv Mineração de dados educacionais
Fatores de impacto
Ensino superior
topic Mineração de dados educacionais
Fatores de impacto
Ensino superior
Educational data mining
Factors affecting academic performance
Higher education
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Educational data mining
Factors affecting academic performance
Higher education
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Through the computerized systems of universities, it is possible to have access to a lot of student data, from demographic, socioeconomic, admission, egress and performance data. Transforming these data into useful information for the academic society, both management and students, is a challenge. One of the ways to identify the impact factors on the academic performance of higher-level students is Educational Data Mining. Based on the results, it is possible to make academic, managerial and administrative decisions based on evidence. This study aims, through the use of Educational Data Mining techniques, to identify which factors impact the performance of higher education students in computing courses, having as a case study, the computing courses of the Instituto de Informática da Universidade Federal de Goiás, with a database of 2.501 incoming students between the years 2009 to 2019. Through Systematic Literature Review, the main algorithms used for educational data mining (analysis and prediction) were identified. The data base went through the data mining process (selection, pre-processing, data transformation, datamining), where a data set was initially defined, which allowed the generation of graphical views of various aspects of the profile of the data students. This dataset was then adjusted to be applied to the algorithms identified in the SLR, where it was possible to define a data model. With the application of these algorithms to the data model, it was possible to identify the algorithms that had the best performance (accuracy). And also analyze, through feature importance techniques, such as SHAP and correlation maps between Heatmaps attributes, which factors had the greatest impact on student performance.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-11-24T11:21:13Z
dc.date.available.fl_str_mv 2021-11-24T11:21:13Z
dc.date.issued.fl_str_mv 2021-09-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, M. C. S. Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação. 2021. 81 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/11767
dc.identifier.dark.fl_str_mv ark:/38995/0013000005p67
identifier_str_mv OLIVEIRA, M. C. S. Fatores de impacto no desempenho acadêmico: um estudo de caso em cursos de computação. 2021. 81 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021.
ark:/38995/0013000005p67
url http://repositorio.bc.ufg.br/tede/handle/tede/11767
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 20
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 26
dc.relation.cnpq.fl_str_mv 184
dc.relation.sponsorship.fl_str_mv 5
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/da559904-2580-4d92-a77c-f9f2d9d3c425/download
http://repositorio.bc.ufg.br/tede/bitstreams/a263c017-8326-4ce2-8094-219505a25977/download
http://repositorio.bc.ufg.br/tede/bitstreams/7b3fa22b-26f2-43d1-a6b1-1ff66c5feb48/download
bitstream.checksum.fl_str_mv f46b00a4e34d58ee9096cee6b370dd48
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172569611894784