Contribuições de red flags para detecção de fraudes corporativas

Detalhes bibliográficos
Autor(a) principal: Nascimento, Monize Ramos do
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000bq9f
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/10523
Resumo: Research has shown the importance of corporate fraud risk red flags from Cressey's (1953) fraud risk theory. Despite presenting false positives, they can identify a fraudulent situation at an early stage. However, the analysis of the use of financial indicators from financial statements has not yet received due attention from scientific research due to their degree of relevance. Thus, there is timely research that has empirically explored the ability of a set of red flags to help identify signs of fraud. In this sense, the objective of this research is to investigate the contributions of red flags obtained from financial reports in the detection of corporate fraud. In order to achieve the proposed objective, non-financial publicly traded companies with shares traded on the Brazilian stock exchange, called B3 (Brasil Bolsa Balcão), were selected, totaling 277 companies. To construct the database used in the variables analyzed, the information present in the companies' explanatory notes, in the Thonsom Reuters® database, on the website of the Commission of Monetary Values (CVM) and the Federal Police, was considered. For the selection of companies, the years between 2008 and 2018 were considered. For the selection of variables, the period was from 2006 to 2018, allowing data to be collected before the fraud occurred. The method chosen was Logistic Regression for panel data. Indicators identified in the literature with potential to identify evidence of fraud were selected. The variables collected were audit firm, debt, inventory increase, profitability and operating losses. The results confirmed the positive association between liability size and fraud risk. For the other red flags addressed, no statistical significance was found to suggest possible contributions. The findings of the research contribute to the discussion of the theme regarding the prevention of corporate fraud.
id UFG-2_5a4a17d83f68f2649e62597d31bed4f5
oai_identifier_str oai:repositorio.bc.ufg.br:tede/10523
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Piscoya Diaz, Mário Ernestohttp://lattes.cnpq.br/8921949936090276Piscoya Diaz, Mário ErnestoRech, Ilírio JoséMurcia, Fernando Dal-RiPundrinch, Gabriel Pereirahttp://lattes.cnpq.br/8715679995997124Nascimento, Monize Ramos do2020-09-02T11:25:05Z2020-09-02T11:25:05Z2020-01-15NASCIMENTO, Monize Ramos do. Contribuições de red flags para detecção de fraudes corporativas. 2020. 70 f. Dissertação (Mestrado em Ciências Contábeis) - Universidade Federal de Goiás, Goiânia, 2020.http://repositorio.bc.ufg.br/tede/handle/tede/10523ark:/38995/001300000bq9fResearch has shown the importance of corporate fraud risk red flags from Cressey's (1953) fraud risk theory. Despite presenting false positives, they can identify a fraudulent situation at an early stage. However, the analysis of the use of financial indicators from financial statements has not yet received due attention from scientific research due to their degree of relevance. Thus, there is timely research that has empirically explored the ability of a set of red flags to help identify signs of fraud. In this sense, the objective of this research is to investigate the contributions of red flags obtained from financial reports in the detection of corporate fraud. In order to achieve the proposed objective, non-financial publicly traded companies with shares traded on the Brazilian stock exchange, called B3 (Brasil Bolsa Balcão), were selected, totaling 277 companies. To construct the database used in the variables analyzed, the information present in the companies' explanatory notes, in the Thonsom Reuters® database, on the website of the Commission of Monetary Values (CVM) and the Federal Police, was considered. For the selection of companies, the years between 2008 and 2018 were considered. For the selection of variables, the period was from 2006 to 2018, allowing data to be collected before the fraud occurred. The method chosen was Logistic Regression for panel data. Indicators identified in the literature with potential to identify evidence of fraud were selected. The variables collected were audit firm, debt, inventory increase, profitability and operating losses. The results confirmed the positive association between liability size and fraud risk. For the other red flags addressed, no statistical significance was found to suggest possible contributions. The findings of the research contribute to the discussion of the theme regarding the prevention of corporate fraud.Pesquisas demonstraram a importância de red flags a partir da teoria de risco de fraude, desenvolvida por Cressey (1953). Apesar de apresentarem falsos positivos, eles são capazes de identificar uma situação fraudulenta ainda em estágio inicial. No entanto, a análise do uso de indicadores advindos das demonstrações financeiras ainda não recebeu a devida atenção da pesquisa científica, dado o seu grau de relevância. Dessa forma, são oportunas pesquisas que explorarem empiricamente a capacidade de um conjunto de red flags contribuir para identificar indícios de fraude. Nesse sentido, o objetivo da presente pesquisa é investigar as contribuições dos red flags obtidos de relatórios financeiros na detecção de fraudes corporativas. Para o alcance do objetivo proposto, foram selecionadas as companhias não financeiras, abertas, com ações negociadas na bolsa de valores brasileira, denominada B3 (Brasil Bolsa Balcão), totalizando 277 empresas. Para construção da base de dados usados nas variáveis analisadas foram consideradas as informações presentes nas notas explicativas das empresas, na base Thonsom Reuters®, no site da Comissão de Valores Monetários (CVM) e da Polícia Federal. Para a seleção das empresas, foram considerado os anos entre 2008 e 2018. Já para a seleção das variáveis, o período foi de 2006 a 2018, possibilitando coletar dados antes do acontecimento da fraude. O método escolhido foi Regressão Logística para dados em painel. Foram selecionados indicadores identificados na literatura com potencial para identificar indícios de fraudes. As variáveis coletadas foram: firma de auditoria, endividamento, aumento de estoque, rentabilidade e perdas operacionais. Os resultados confirmaram a associação positiva entre o tamanho dos passivos e risco de fraude. Para os demais red flags abordados não foram encontradas significâncias estatísticas que sugerissem possíveis contribuições. Os achados da pesquisa contribuem na discussão da temática a respeito da prevenção de fraudes corporativas.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2020-09-02T11:23:44Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertacão - Monize Ramos do Nascimento - 2020.pdf: 1585530 bytes, checksum: 0d70fc96038257846cb60fcbc5dc3553 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2020-09-02T11:25:04Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertacão - Monize Ramos do Nascimento - 2020.pdf: 1585530 bytes, checksum: 0d70fc96038257846cb60fcbc5dc3553 (MD5)Made available in DSpace on 2020-09-02T11:25:05Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertacão - Monize Ramos do Nascimento - 2020.pdf: 1585530 bytes, checksum: 0d70fc96038257846cb60fcbc5dc3553 (MD5) Previous issue date: 2020-01-15Fundação de Amparo à Pesquisa do Estado de GoiásporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciências Contábeis (FACE)UFGBrasilFaculdade de Administração, Ciências Contábeis e Ciências Econômicas - FACE (RG)Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFraudes corporativasRed flags e prevençãoCorporate fraudRed flags and preventionCIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEISContribuições de red flags para detecção de fraudes corporativasRed flags contribution for corporate fraud detectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis305005005005007163reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/dd734a53-57fe-4b43-a274-dd1d34785384/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.bc.ufg.br/tede/bitstreams/1088ea8e-8a3a-4dad-adf5-cc1cbada711f/downloade39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDissertacão - Monize Ramos do Nascimento - 2020.pdfDissertacão - Monize Ramos do Nascimento - 2020.pdfapplication/pdf1585530http://repositorio.bc.ufg.br/tede/bitstreams/54e003b1-a130-4a7d-97e7-1b46b4c40699/download0d70fc96038257846cb60fcbc5dc3553MD53tede/105232020-09-02 08:25:06.218http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.bc.ufg.br:tede/10523http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2020-09-02T11:25:06Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Contribuições de red flags para detecção de fraudes corporativas
dc.title.alternative.eng.fl_str_mv Red flags contribution for corporate fraud detection
title Contribuições de red flags para detecção de fraudes corporativas
spellingShingle Contribuições de red flags para detecção de fraudes corporativas
Nascimento, Monize Ramos do
Fraudes corporativas
Red flags e prevenção
Corporate fraud
Red flags and prevention
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS
title_short Contribuições de red flags para detecção de fraudes corporativas
title_full Contribuições de red flags para detecção de fraudes corporativas
title_fullStr Contribuições de red flags para detecção de fraudes corporativas
title_full_unstemmed Contribuições de red flags para detecção de fraudes corporativas
title_sort Contribuições de red flags para detecção de fraudes corporativas
author Nascimento, Monize Ramos do
author_facet Nascimento, Monize Ramos do
author_role author
dc.contributor.advisor1.fl_str_mv Piscoya Diaz, Mário Ernesto
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8921949936090276
dc.contributor.referee1.fl_str_mv Piscoya Diaz, Mário Ernesto
dc.contributor.referee2.fl_str_mv Rech, Ilírio José
dc.contributor.referee3.fl_str_mv Murcia, Fernando Dal-Ri
dc.contributor.referee4.fl_str_mv Pundrinch, Gabriel Pereira
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8715679995997124
dc.contributor.author.fl_str_mv Nascimento, Monize Ramos do
contributor_str_mv Piscoya Diaz, Mário Ernesto
Piscoya Diaz, Mário Ernesto
Rech, Ilírio José
Murcia, Fernando Dal-Ri
Pundrinch, Gabriel Pereira
dc.subject.por.fl_str_mv Fraudes corporativas
Red flags e prevenção
topic Fraudes corporativas
Red flags e prevenção
Corporate fraud
Red flags and prevention
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS
dc.subject.eng.fl_str_mv Corporate fraud
Red flags and prevention
dc.subject.cnpq.fl_str_mv CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO::CIENCIAS CONTABEIS
description Research has shown the importance of corporate fraud risk red flags from Cressey's (1953) fraud risk theory. Despite presenting false positives, they can identify a fraudulent situation at an early stage. However, the analysis of the use of financial indicators from financial statements has not yet received due attention from scientific research due to their degree of relevance. Thus, there is timely research that has empirically explored the ability of a set of red flags to help identify signs of fraud. In this sense, the objective of this research is to investigate the contributions of red flags obtained from financial reports in the detection of corporate fraud. In order to achieve the proposed objective, non-financial publicly traded companies with shares traded on the Brazilian stock exchange, called B3 (Brasil Bolsa Balcão), were selected, totaling 277 companies. To construct the database used in the variables analyzed, the information present in the companies' explanatory notes, in the Thonsom Reuters® database, on the website of the Commission of Monetary Values (CVM) and the Federal Police, was considered. For the selection of companies, the years between 2008 and 2018 were considered. For the selection of variables, the period was from 2006 to 2018, allowing data to be collected before the fraud occurred. The method chosen was Logistic Regression for panel data. Indicators identified in the literature with potential to identify evidence of fraud were selected. The variables collected were audit firm, debt, inventory increase, profitability and operating losses. The results confirmed the positive association between liability size and fraud risk. For the other red flags addressed, no statistical significance was found to suggest possible contributions. The findings of the research contribute to the discussion of the theme regarding the prevention of corporate fraud.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-09-02T11:25:05Z
dc.date.available.fl_str_mv 2020-09-02T11:25:05Z
dc.date.issued.fl_str_mv 2020-01-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NASCIMENTO, Monize Ramos do. Contribuições de red flags para detecção de fraudes corporativas. 2020. 70 f. Dissertação (Mestrado em Ciências Contábeis) - Universidade Federal de Goiás, Goiânia, 2020.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/10523
dc.identifier.dark.fl_str_mv ark:/38995/001300000bq9f
identifier_str_mv NASCIMENTO, Monize Ramos do. Contribuições de red flags para detecção de fraudes corporativas. 2020. 70 f. Dissertação (Mestrado em Ciências Contábeis) - Universidade Federal de Goiás, Goiânia, 2020.
ark:/38995/001300000bq9f
url http://repositorio.bc.ufg.br/tede/handle/tede/10523
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 30
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 7
dc.relation.cnpq.fl_str_mv 16
dc.relation.sponsorship.fl_str_mv 3
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciências Contábeis (FACE)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Faculdade de Administração, Ciências Contábeis e Ciências Econômicas - FACE (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/dd734a53-57fe-4b43-a274-dd1d34785384/download
http://repositorio.bc.ufg.br/tede/bitstreams/1088ea8e-8a3a-4dad-adf5-cc1cbada711f/download
http://repositorio.bc.ufg.br/tede/bitstreams/54e003b1-a130-4a7d-97e7-1b46b4c40699/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
e39d27027a6cc9cb039ad269a5db8e34
0d70fc96038257846cb60fcbc5dc3553
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172624778526720