O teorema de Marden e uma generalização
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000002j8g |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/6705 |
Resumo: | The main objective of this work is to demonstrate Marden’s Theorem, which tells us that given a third-degree polynomial with complex coefficients, the roots of this polynomial are not collinear and form a triangle T in the complex plane. There is a unique ellipse inscribed in T and tangent to the sides at their midpoints. The foci of this ellipse are the roots of the derivative of the polynomial. We show that such an ellipse is Steiner’s Ellipse. We make a generalization of the Marden Theorem using degree n polynomial. |
id |
UFG-2_6f0277416873c0a6d437b967405f07b8 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/6705 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Rodrigues, Paulo Henrique de Azevedohttp://lattes.cnpq.br/8910130626123426Rodrigues, Paulo Henrique de AzevedoOliveira, Ricardo Nunes deSousa, Flávio Raimundo dehttp://lattes.cnpq.br/5952382223261048Volpato, Pollyana Gomes2017-01-11T09:42:09Z2016-12-09VOLPATO, P. G. O teorema de Marden e uma generalização. 2016. 52 f. Dissertação (Mestrado Profissional em em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/6705ark:/38995/0013000002j8gThe main objective of this work is to demonstrate Marden’s Theorem, which tells us that given a third-degree polynomial with complex coefficients, the roots of this polynomial are not collinear and form a triangle T in the complex plane. There is a unique ellipse inscribed in T and tangent to the sides at their midpoints. The foci of this ellipse are the roots of the derivative of the polynomial. We show that such an ellipse is Steiner’s Ellipse. We make a generalization of the Marden Theorem using degree n polynomial.Temos como objetivo central neste trabalho demonstrar o Teorema de Marden, que nos diz que, dado um polinômio de terceiro grau com coeficientes complexos, as raízes desse polinômio não são colineares e formam um triângulo T no plano complexo. Há uma única elipse inscrita em T e tangente aos lados nos seus pontos médios. Os focos dessa elipse são as raízes da derivada do polinômio. Mostramos que tal elipse é a Elipse de Steiner. Fazemos uma generalização do Teorema de Marden utilizando polinômio de grau n.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-10T14:58:57Z No. of bitstreams: 2 Dissertação - Pollyana Gomes Volpato - 2016.pdf: 1172027 bytes, checksum: 6e8ebfc67549380e690db90bc68b9104 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-11T09:42:09Z (GMT) No. of bitstreams: 2 Dissertação - Pollyana Gomes Volpato - 2016.pdf: 1172027 bytes, checksum: 6e8ebfc67549380e690db90bc68b9104 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-01-11T09:42:09Z (GMT). No. of bitstreams: 2 Dissertação - Pollyana Gomes Volpato - 2016.pdf: 1172027 bytes, checksum: 6e8ebfc67549380e690db90bc68b9104 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-12-09application/pdfporUniversidade Federal de GoiásPROFMAT - Programa de Pós-graduação em Matemática em Rede Nacional - Sociedade Brasileira de Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessElipse de SteinerTeorema de MardenGeneralização do teorema de MardenPolinômios com coeficientes complexosSteiner’s ellipseMarden’s theoremGeneralization of Marden’s theoremPolynomials with complex coefficientsCIENCIAS EXATAS E DA TERRA::MATEMATICAO teorema de Marden e uma generalizaçãoMarden’s theorem and a generalizationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis4280721485626151024600600600-4268777512335152015-7090823417984401694reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Pollyana Gomes Volpato - 2016.pdfDissertação - Pollyana Gomes Volpato - 2016.pdfapplication/pdf1172027http://repositorio.bc.ufg.br/tede/bitstreams/3eb1806d-0ec6-45cf-8017-a417795ebc40/download6e8ebfc67549380e690db90bc68b9104MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/697b4fe9-3f36-47ee-a344-1fe9c4ce70cb/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/ecb42fd1-9888-4a77-b264-2f571a9caf10/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/8b91859b-c117-4d6b-869e-d7316d8e0b16/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/6356dfd1-03b9-4359-87ea-1e39b94ff670/downloadd41d8cd98f00b204e9800998ecf8427eMD54tede/67052017-01-11 07:42:09.258http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/6705http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-01-11T09:42:09Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
O teorema de Marden e uma generalização |
dc.title.alternative.eng.fl_str_mv |
Marden’s theorem and a generalization |
title |
O teorema de Marden e uma generalização |
spellingShingle |
O teorema de Marden e uma generalização Volpato, Pollyana Gomes Elipse de Steiner Teorema de Marden Generalização do teorema de Marden Polinômios com coeficientes complexos Steiner’s ellipse Marden’s theorem Generalization of Marden’s theorem Polynomials with complex coefficients CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
O teorema de Marden e uma generalização |
title_full |
O teorema de Marden e uma generalização |
title_fullStr |
O teorema de Marden e uma generalização |
title_full_unstemmed |
O teorema de Marden e uma generalização |
title_sort |
O teorema de Marden e uma generalização |
author |
Volpato, Pollyana Gomes |
author_facet |
Volpato, Pollyana Gomes |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Rodrigues, Paulo Henrique de Azevedo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8910130626123426 |
dc.contributor.referee1.fl_str_mv |
Rodrigues, Paulo Henrique de Azevedo |
dc.contributor.referee2.fl_str_mv |
Oliveira, Ricardo Nunes de |
dc.contributor.referee3.fl_str_mv |
Sousa, Flávio Raimundo de |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5952382223261048 |
dc.contributor.author.fl_str_mv |
Volpato, Pollyana Gomes |
contributor_str_mv |
Rodrigues, Paulo Henrique de Azevedo Rodrigues, Paulo Henrique de Azevedo Oliveira, Ricardo Nunes de Sousa, Flávio Raimundo de |
dc.subject.por.fl_str_mv |
Elipse de Steiner Teorema de Marden Generalização do teorema de Marden Polinômios com coeficientes complexos |
topic |
Elipse de Steiner Teorema de Marden Generalização do teorema de Marden Polinômios com coeficientes complexos Steiner’s ellipse Marden’s theorem Generalization of Marden’s theorem Polynomials with complex coefficients CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Steiner’s ellipse Marden’s theorem Generalization of Marden’s theorem Polynomials with complex coefficients |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
The main objective of this work is to demonstrate Marden’s Theorem, which tells us that given a third-degree polynomial with complex coefficients, the roots of this polynomial are not collinear and form a triangle T in the complex plane. There is a unique ellipse inscribed in T and tangent to the sides at their midpoints. The foci of this ellipse are the roots of the derivative of the polynomial. We show that such an ellipse is Steiner’s Ellipse. We make a generalization of the Marden Theorem using degree n polynomial. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-12-09 |
dc.date.accessioned.fl_str_mv |
2017-01-11T09:42:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
VOLPATO, P. G. O teorema de Marden e uma generalização. 2016. 52 f. Dissertação (Mestrado Profissional em em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2016. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/6705 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000002j8g |
identifier_str_mv |
VOLPATO, P. G. O teorema de Marden e uma generalização. 2016. 52 f. Dissertação (Mestrado Profissional em em Matemática em Rede Nacional) - Universidade Federal de Goiás, Goiânia, 2016. ark:/38995/0013000002j8g |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/6705 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
4280721485626151024 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
PROFMAT - Programa de Pós-graduação em Matemática em Rede Nacional - Sociedade Brasileira de Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/3eb1806d-0ec6-45cf-8017-a417795ebc40/download http://repositorio.bc.ufg.br/tede/bitstreams/697b4fe9-3f36-47ee-a344-1fe9c4ce70cb/download http://repositorio.bc.ufg.br/tede/bitstreams/ecb42fd1-9888-4a77-b264-2f571a9caf10/download http://repositorio.bc.ufg.br/tede/bitstreams/8b91859b-c117-4d6b-869e-d7316d8e0b16/download http://repositorio.bc.ufg.br/tede/bitstreams/6356dfd1-03b9-4359-87ea-1e39b94ff670/download |
bitstream.checksum.fl_str_mv |
6e8ebfc67549380e690db90bc68b9104 bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172536117231616 |