Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000b5mn |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/10131 |
Resumo: | One of the most remarkable advances in Remote Sensing is the devise of the CubeSat satellite building standard. This technology opens up a myriad of possible applications that benefit from the higher spatiotemporal resolutions provided by standard-compatible nanosatellite constellations. In this scenario, one need to investigate the new challenges and how to address them to take advantage of this new type of Remote Sensing Big Data. Among these challenges is the development of means to extract useful information from pixel observations over time in a fine-grained manner. This paper is a seminal study on the use of a special Deep Learning approach, Recurrent Neural Networks, to classify long time series of land cover observations. The method was tested against the problem of identifying areas of deforestation that occurred in a contiguous Cerrado region (17,810 km2 ) over 13 months using high resolution images from PlanetScope, a constellation of CubeSat nanosatellites. In addition to temporal analysis, a solution was needed to make mapping more spatially coherent, which was achieved through the use of a Convolutional Neural Network architecture known as U-Net, in order to perform the semantic segmentation of the temporal analysis result performed in the previous step. The accuracy analysis of the model obtained an F1-score index of 0.9 in identifying deforestation areas of the region of interest over the analyzed period. Given the high performance requirements demanded by the volume of data that this new reality imposes on us, the computational power of parallel processing of a cluster of low cost computers has been explored, enabling the mapping of the studied region to be accelerated up to six times. A discussion of limitations and capabilities of the proposed approach is also presented. |
id |
UFG-2_88c6367246d0bb04f8496f5300305c70 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/10131 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Martins, Wellington Santoshttp://lattes.cnpq.br/3041686206689904Ferreira Junior, Laerte GuimaraesSoares, Anderson da SilvaMartins, Wellington Santoshttp://lattes.cnpq.br/3790273060324967Taquary, Evandro Carrijo2019-10-29T12:27:17Z2019-09-24TAQUARY, Evandro Carrijo. Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução. 2019. 64 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/10131ark:/38995/001300000b5mnOne of the most remarkable advances in Remote Sensing is the devise of the CubeSat satellite building standard. This technology opens up a myriad of possible applications that benefit from the higher spatiotemporal resolutions provided by standard-compatible nanosatellite constellations. In this scenario, one need to investigate the new challenges and how to address them to take advantage of this new type of Remote Sensing Big Data. Among these challenges is the development of means to extract useful information from pixel observations over time in a fine-grained manner. This paper is a seminal study on the use of a special Deep Learning approach, Recurrent Neural Networks, to classify long time series of land cover observations. The method was tested against the problem of identifying areas of deforestation that occurred in a contiguous Cerrado region (17,810 km2 ) over 13 months using high resolution images from PlanetScope, a constellation of CubeSat nanosatellites. In addition to temporal analysis, a solution was needed to make mapping more spatially coherent, which was achieved through the use of a Convolutional Neural Network architecture known as U-Net, in order to perform the semantic segmentation of the temporal analysis result performed in the previous step. The accuracy analysis of the model obtained an F1-score index of 0.9 in identifying deforestation areas of the region of interest over the analyzed period. Given the high performance requirements demanded by the volume of data that this new reality imposes on us, the computational power of parallel processing of a cluster of low cost computers has been explored, enabling the mapping of the studied region to be accelerated up to six times. A discussion of limitations and capabilities of the proposed approach is also presented.Um dos avanços mais notáveis do Sensoriamento Remoto está na concepção do padrão de construção de satélites CubeSat. Essa tecnologia abre uma miríade de possíveis aplicações que beneficiam-se das maiores resoluções espaçotemporais fornecidas por constelações de nanossatélites compatíveis com o padrão. Nesse cenário, é preciso investigar os novos desafios e como enfrentá-los para aproveitar esse novo tipo de Remote Sensing Big Data. Entre esses desafios está o desenvolvimento de meios para extrair informações úteis das observações de pixeis ao longo do tempo de maneira refinada. Este trabalho é um estudo seminal sobre o uso de uma abordagem especial de Aprendizado Profundo, a Long Short Term Memory, para classificar longas séries temporais de observações da cobertura terrestre. O método foi testado com o problema de identificar áreas de desmatamentos que ocorreram em uma região contígua de Cerrado (17.810 km2 ), ao longo de 13 meses, através do uso de imagens de alta resolução da PlanetScope, uma constelação de nanossatélites CubeSat. Além da análise temporal, fez-se necessária uma solução que tornasse o mapeamento mais espacialmente coerente, o que foi alcançado através do uso de uma arquitetura de Rede Neural Convolucional conhecida como U-Net, a fim de realizar a segmentação semântica do resultado da avaliação temporal efetuada na etapa anterior. A análise de acurácia do mapeamento final obteve um índice F1 -score de 0.9 para identificação de áreas de desmatamento na região de interesse ao longo do período especificado. Haja vista os requisitos de alto desempenho demandados pelo volume de dados que essa nova realidade nos impõe, foi explorado o poder computacional de processamento em paralelo de um cluster de computadores de baixo custo, possibilitando acelerar em até seis vezes o mapeamento da região estudada. Uma discussão sobre limitações e capacidades da abordagem proposta também é apresentada.Submitted by Onia Arantes Albuquerque (onia.ufg@gmail.com) on 2019-10-25T14:28:51Z No. of bitstreams: 2 Dissertacao - Evandro Carrijo Taquary - 2019.pdf: 32044079 bytes, checksum: 16567f7a4ff98dbcec5bc88790693a56 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-10-29T12:27:17Z (GMT) No. of bitstreams: 2 Dissertacao - Evandro Carrijo Taquary - 2019.pdf: 32044079 bytes, checksum: 16567f7a4ff98dbcec5bc88790693a56 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-10-29T12:27:17Z (GMT). No. of bitstreams: 2 Dissertacao - Evandro Carrijo Taquary - 2019.pdf: 32044079 bytes, checksum: 16567f7a4ff98dbcec5bc88790693a56 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-09-24Fundação de Apoio à Pesquisa - FUNAPEapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAprendizado profundoLSTMUNETSensoriamento remotoDesmatamentoParalelismoDeep learningLSTMUNETRemote sensingDeforestationParallelismCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAODeep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resoluçãoDeep learning for accurately identifying deforestations through the use of high resolution satellite imageryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-77122667346336447683671711205811204509-8644727573657825680reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/80433b0a-d73b-45f7-bb13-5491e5da0065/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/cd3adfc3-2116-453a-a3d4-f294574dbfe3/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/e716bf3a-686d-4c35-af7b-b7f073623115/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/cbdf5141-9b7e-4cfb-bbd2-478564241ced/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertacao - Evandro Carrijo Taquary - 2019.pdfDissertacao - Evandro Carrijo Taquary - 2019.pdfapplication/pdf32044079http://repositorio.bc.ufg.br/tede/bitstreams/e26b2e42-ffb7-4db8-b3cd-1649ed5d6a90/download16567f7a4ff98dbcec5bc88790693a56MD55tede/101312019-10-29 09:27:17.912http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10131http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-10-29T12:27:17Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução |
dc.title.alternative.eng.fl_str_mv |
Deep learning for accurately identifying deforestations through the use of high resolution satellite imagery |
title |
Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução |
spellingShingle |
Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução Taquary, Evandro Carrijo Aprendizado profundo LSTM UNET Sensoriamento remoto Desmatamento Paralelismo Deep learning LSTM UNET Remote sensing Deforestation Parallelism CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução |
title_full |
Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução |
title_fullStr |
Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução |
title_full_unstemmed |
Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução |
title_sort |
Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução |
author |
Taquary, Evandro Carrijo |
author_facet |
Taquary, Evandro Carrijo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Martins, Wellington Santos |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3041686206689904 |
dc.contributor.referee1.fl_str_mv |
Ferreira Junior, Laerte Guimaraes |
dc.contributor.referee2.fl_str_mv |
Soares, Anderson da Silva |
dc.contributor.referee3.fl_str_mv |
Martins, Wellington Santos |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3790273060324967 |
dc.contributor.author.fl_str_mv |
Taquary, Evandro Carrijo |
contributor_str_mv |
Martins, Wellington Santos Ferreira Junior, Laerte Guimaraes Soares, Anderson da Silva Martins, Wellington Santos |
dc.subject.por.fl_str_mv |
Aprendizado profundo LSTM UNET Sensoriamento remoto Desmatamento Paralelismo |
topic |
Aprendizado profundo LSTM UNET Sensoriamento remoto Desmatamento Paralelismo Deep learning LSTM UNET Remote sensing Deforestation Parallelism CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Deep learning LSTM UNET Remote sensing Deforestation Parallelism |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
One of the most remarkable advances in Remote Sensing is the devise of the CubeSat satellite building standard. This technology opens up a myriad of possible applications that benefit from the higher spatiotemporal resolutions provided by standard-compatible nanosatellite constellations. In this scenario, one need to investigate the new challenges and how to address them to take advantage of this new type of Remote Sensing Big Data. Among these challenges is the development of means to extract useful information from pixel observations over time in a fine-grained manner. This paper is a seminal study on the use of a special Deep Learning approach, Recurrent Neural Networks, to classify long time series of land cover observations. The method was tested against the problem of identifying areas of deforestation that occurred in a contiguous Cerrado region (17,810 km2 ) over 13 months using high resolution images from PlanetScope, a constellation of CubeSat nanosatellites. In addition to temporal analysis, a solution was needed to make mapping more spatially coherent, which was achieved through the use of a Convolutional Neural Network architecture known as U-Net, in order to perform the semantic segmentation of the temporal analysis result performed in the previous step. The accuracy analysis of the model obtained an F1-score index of 0.9 in identifying deforestation areas of the region of interest over the analyzed period. Given the high performance requirements demanded by the volume of data that this new reality imposes on us, the computational power of parallel processing of a cluster of low cost computers has been explored, enabling the mapping of the studied region to be accelerated up to six times. A discussion of limitations and capabilities of the proposed approach is also presented. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-10-29T12:27:17Z |
dc.date.issued.fl_str_mv |
2019-09-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
TAQUARY, Evandro Carrijo. Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução. 2019. 64 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/10131 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000b5mn |
identifier_str_mv |
TAQUARY, Evandro Carrijo. Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução. 2019. 64 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/001300000b5mn |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/10131 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-3303550325223384799 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-7712266734633644768 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.relation.sponsorship.fl_str_mv |
-8644727573657825680 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/80433b0a-d73b-45f7-bb13-5491e5da0065/download http://repositorio.bc.ufg.br/tede/bitstreams/cd3adfc3-2116-453a-a3d4-f294574dbfe3/download http://repositorio.bc.ufg.br/tede/bitstreams/e716bf3a-686d-4c35-af7b-b7f073623115/download http://repositorio.bc.ufg.br/tede/bitstreams/cbdf5141-9b7e-4cfb-bbd2-478564241ced/download http://repositorio.bc.ufg.br/tede/bitstreams/e26b2e42-ffb7-4db8-b3cd-1649ed5d6a90/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 16567f7a4ff98dbcec5bc88790693a56 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172618723000320 |