Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução

Detalhes bibliográficos
Autor(a) principal: Taquary, Evandro Carrijo
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000b5mn
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/10131
Resumo: One of the most remarkable advances in Remote Sensing is the devise of the CubeSat satellite building standard. This technology opens up a myriad of possible applications that benefit from the higher spatiotemporal resolutions provided by standard-compatible nanosatellite constellations. In this scenario, one need to investigate the new challenges and how to address them to take advantage of this new type of Remote Sensing Big Data. Among these challenges is the development of means to extract useful information from pixel observations over time in a fine-grained manner. This paper is a seminal study on the use of a special Deep Learning approach, Recurrent Neural Networks, to classify long time series of land cover observations. The method was tested against the problem of identifying areas of deforestation that occurred in a contiguous Cerrado region (17,810 km2 ) over 13 months using high resolution images from PlanetScope, a constellation of CubeSat nanosatellites. In addition to temporal analysis, a solution was needed to make mapping more spatially coherent, which was achieved through the use of a Convolutional Neural Network architecture known as U-Net, in order to perform the semantic segmentation of the temporal analysis result performed in the previous step. The accuracy analysis of the model obtained an F1-score index of 0.9 in identifying deforestation areas of the region of interest over the analyzed period. Given the high performance requirements demanded by the volume of data that this new reality imposes on us, the computational power of parallel processing of a cluster of low cost computers has been explored, enabling the mapping of the studied region to be accelerated up to six times. A discussion of limitations and capabilities of the proposed approach is also presented.
id UFG-2_88c6367246d0bb04f8496f5300305c70
oai_identifier_str oai:repositorio.bc.ufg.br:tede/10131
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Martins, Wellington Santoshttp://lattes.cnpq.br/3041686206689904Ferreira Junior, Laerte GuimaraesSoares, Anderson da SilvaMartins, Wellington Santoshttp://lattes.cnpq.br/3790273060324967Taquary, Evandro Carrijo2019-10-29T12:27:17Z2019-09-24TAQUARY, Evandro Carrijo. Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução. 2019. 64 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/10131ark:/38995/001300000b5mnOne of the most remarkable advances in Remote Sensing is the devise of the CubeSat satellite building standard. This technology opens up a myriad of possible applications that benefit from the higher spatiotemporal resolutions provided by standard-compatible nanosatellite constellations. In this scenario, one need to investigate the new challenges and how to address them to take advantage of this new type of Remote Sensing Big Data. Among these challenges is the development of means to extract useful information from pixel observations over time in a fine-grained manner. This paper is a seminal study on the use of a special Deep Learning approach, Recurrent Neural Networks, to classify long time series of land cover observations. The method was tested against the problem of identifying areas of deforestation that occurred in a contiguous Cerrado region (17,810 km2 ) over 13 months using high resolution images from PlanetScope, a constellation of CubeSat nanosatellites. In addition to temporal analysis, a solution was needed to make mapping more spatially coherent, which was achieved through the use of a Convolutional Neural Network architecture known as U-Net, in order to perform the semantic segmentation of the temporal analysis result performed in the previous step. The accuracy analysis of the model obtained an F1-score index of 0.9 in identifying deforestation areas of the region of interest over the analyzed period. Given the high performance requirements demanded by the volume of data that this new reality imposes on us, the computational power of parallel processing of a cluster of low cost computers has been explored, enabling the mapping of the studied region to be accelerated up to six times. A discussion of limitations and capabilities of the proposed approach is also presented.Um dos avanços mais notáveis do Sensoriamento Remoto está na concepção do padrão de construção de satélites CubeSat. Essa tecnologia abre uma miríade de possíveis aplicações que beneficiam-se das maiores resoluções espaçotemporais fornecidas por constelações de nanossatélites compatíveis com o padrão. Nesse cenário, é preciso investigar os novos desafios e como enfrentá-los para aproveitar esse novo tipo de Remote Sensing Big Data. Entre esses desafios está o desenvolvimento de meios para extrair informações úteis das observações de pixeis ao longo do tempo de maneira refinada. Este trabalho é um estudo seminal sobre o uso de uma abordagem especial de Aprendizado Profundo, a Long Short Term Memory, para classificar longas séries temporais de observações da cobertura terrestre. O método foi testado com o problema de identificar áreas de desmatamentos que ocorreram em uma região contígua de Cerrado (17.810 km2 ), ao longo de 13 meses, através do uso de imagens de alta resolução da PlanetScope, uma constelação de nanossatélites CubeSat. Além da análise temporal, fez-se necessária uma solução que tornasse o mapeamento mais espacialmente coerente, o que foi alcançado através do uso de uma arquitetura de Rede Neural Convolucional conhecida como U-Net, a fim de realizar a segmentação semântica do resultado da avaliação temporal efetuada na etapa anterior. A análise de acurácia do mapeamento final obteve um índice F1 -score de 0.9 para identificação de áreas de desmatamento na região de interesse ao longo do período especificado. Haja vista os requisitos de alto desempenho demandados pelo volume de dados que essa nova realidade nos impõe, foi explorado o poder computacional de processamento em paralelo de um cluster de computadores de baixo custo, possibilitando acelerar em até seis vezes o mapeamento da região estudada. Uma discussão sobre limitações e capacidades da abordagem proposta também é apresentada.Submitted by Onia Arantes Albuquerque (onia.ufg@gmail.com) on 2019-10-25T14:28:51Z No. of bitstreams: 2 Dissertacao - Evandro Carrijo Taquary - 2019.pdf: 32044079 bytes, checksum: 16567f7a4ff98dbcec5bc88790693a56 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-10-29T12:27:17Z (GMT) No. of bitstreams: 2 Dissertacao - Evandro Carrijo Taquary - 2019.pdf: 32044079 bytes, checksum: 16567f7a4ff98dbcec5bc88790693a56 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-10-29T12:27:17Z (GMT). No. of bitstreams: 2 Dissertacao - Evandro Carrijo Taquary - 2019.pdf: 32044079 bytes, checksum: 16567f7a4ff98dbcec5bc88790693a56 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-09-24Fundação de Apoio à Pesquisa - FUNAPEapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAprendizado profundoLSTMUNETSensoriamento remotoDesmatamentoParalelismoDeep learningLSTMUNETRemote sensingDeforestationParallelismCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAODeep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resoluçãoDeep learning for accurately identifying deforestations through the use of high resolution satellite imageryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-77122667346336447683671711205811204509-8644727573657825680reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/80433b0a-d73b-45f7-bb13-5491e5da0065/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/cd3adfc3-2116-453a-a3d4-f294574dbfe3/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/e716bf3a-686d-4c35-af7b-b7f073623115/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/cbdf5141-9b7e-4cfb-bbd2-478564241ced/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertacao - Evandro Carrijo Taquary - 2019.pdfDissertacao - Evandro Carrijo Taquary - 2019.pdfapplication/pdf32044079http://repositorio.bc.ufg.br/tede/bitstreams/e26b2e42-ffb7-4db8-b3cd-1649ed5d6a90/download16567f7a4ff98dbcec5bc88790693a56MD55tede/101312019-10-29 09:27:17.912http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10131http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-10-29T12:27:17Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
dc.title.alternative.eng.fl_str_mv Deep learning for accurately identifying deforestations through the use of high resolution satellite imagery
title Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
spellingShingle Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
Taquary, Evandro Carrijo
Aprendizado profundo
LSTM
UNET
Sensoriamento remoto
Desmatamento
Paralelismo
Deep learning
LSTM
UNET
Remote sensing
Deforestation
Parallelism
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
title_full Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
title_fullStr Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
title_full_unstemmed Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
title_sort Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução
author Taquary, Evandro Carrijo
author_facet Taquary, Evandro Carrijo
author_role author
dc.contributor.advisor1.fl_str_mv Martins, Wellington Santos
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3041686206689904
dc.contributor.referee1.fl_str_mv Ferreira Junior, Laerte Guimaraes
dc.contributor.referee2.fl_str_mv Soares, Anderson da Silva
dc.contributor.referee3.fl_str_mv Martins, Wellington Santos
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3790273060324967
dc.contributor.author.fl_str_mv Taquary, Evandro Carrijo
contributor_str_mv Martins, Wellington Santos
Ferreira Junior, Laerte Guimaraes
Soares, Anderson da Silva
Martins, Wellington Santos
dc.subject.por.fl_str_mv Aprendizado profundo
LSTM
UNET
Sensoriamento remoto
Desmatamento
Paralelismo
topic Aprendizado profundo
LSTM
UNET
Sensoriamento remoto
Desmatamento
Paralelismo
Deep learning
LSTM
UNET
Remote sensing
Deforestation
Parallelism
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Deep learning
LSTM
UNET
Remote sensing
Deforestation
Parallelism
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description One of the most remarkable advances in Remote Sensing is the devise of the CubeSat satellite building standard. This technology opens up a myriad of possible applications that benefit from the higher spatiotemporal resolutions provided by standard-compatible nanosatellite constellations. In this scenario, one need to investigate the new challenges and how to address them to take advantage of this new type of Remote Sensing Big Data. Among these challenges is the development of means to extract useful information from pixel observations over time in a fine-grained manner. This paper is a seminal study on the use of a special Deep Learning approach, Recurrent Neural Networks, to classify long time series of land cover observations. The method was tested against the problem of identifying areas of deforestation that occurred in a contiguous Cerrado region (17,810 km2 ) over 13 months using high resolution images from PlanetScope, a constellation of CubeSat nanosatellites. In addition to temporal analysis, a solution was needed to make mapping more spatially coherent, which was achieved through the use of a Convolutional Neural Network architecture known as U-Net, in order to perform the semantic segmentation of the temporal analysis result performed in the previous step. The accuracy analysis of the model obtained an F1-score index of 0.9 in identifying deforestation areas of the region of interest over the analyzed period. Given the high performance requirements demanded by the volume of data that this new reality imposes on us, the computational power of parallel processing of a cluster of low cost computers has been explored, enabling the mapping of the studied region to be accelerated up to six times. A discussion of limitations and capabilities of the proposed approach is also presented.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-10-29T12:27:17Z
dc.date.issued.fl_str_mv 2019-09-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TAQUARY, Evandro Carrijo. Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução. 2019. 64 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/10131
dc.identifier.dark.fl_str_mv ark:/38995/001300000b5mn
identifier_str_mv TAQUARY, Evandro Carrijo. Deep learning para identificação precisa de desmatamentos através do uso de imagens satelitárias de alta resolução. 2019. 64 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2019.
ark:/38995/001300000b5mn
url http://repositorio.bc.ufg.br/tede/handle/tede/10131
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv -8644727573657825680
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/80433b0a-d73b-45f7-bb13-5491e5da0065/download
http://repositorio.bc.ufg.br/tede/bitstreams/cd3adfc3-2116-453a-a3d4-f294574dbfe3/download
http://repositorio.bc.ufg.br/tede/bitstreams/e716bf3a-686d-4c35-af7b-b7f073623115/download
http://repositorio.bc.ufg.br/tede/bitstreams/cbdf5141-9b7e-4cfb-bbd2-478564241ced/download
http://repositorio.bc.ufg.br/tede/bitstreams/e26b2e42-ffb7-4db8-b3cd-1649ed5d6a90/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
16567f7a4ff98dbcec5bc88790693a56
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172618723000320