Computação em grupos de permutação finitos com GAP

Detalhes bibliográficos
Autor(a) principal: Romero, Angie Tatiana Suárez
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000cksb
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/8220
Resumo: Cayley’s theorem allows us to represent a finite group as a permutations group of a finite set of points. In general, an action of a finite group G in a finite set, is described as an application of the group G in the symmetric group Sym(Ω). In this work we will describe some algorithms for permutation groups and implement them in the GAP system. We begin by describing a way of representing groups in computers, we calculate orbits, stabilizers in the basic form and by means of Schreier’s vectors. Later we make algorithms to work with primitive and transitive groups, thus arriving at the concept of BSGS, base and strong generator set, for permutation groups with the algorithm SCHREIERSIMS. In the end we work with group homomorphisms, we find the elements of a group through backtrack searches.
id UFG-2_919c5b1a2d28d296daa0e1d73576552e
oai_identifier_str oai:repositorio.bc.ufg.br:tede/8220
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Oliveira, Ricardo Nunes dehttp://lattes.cnpq.br/0563210461148997Oliveira, Ricardo Nunes dehttp://lattes.cnpq.br/0563210461148997Chaves, Ana Paula de AraújoBastos Junior, Raimundo de Araújohttp://lattes.cnpq.br/0851727986552359Romero, Angie Tatiana Suárez2018-03-15T11:07:28Z2018-03-05ROMERO, A. T. S. Computação em grupos de permutação finitos com GAP. 2018. 101 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/8220ark:/38995/001300000cksbCayley’s theorem allows us to represent a finite group as a permutations group of a finite set of points. In general, an action of a finite group G in a finite set, is described as an application of the group G in the symmetric group Sym(Ω). In this work we will describe some algorithms for permutation groups and implement them in the GAP system. We begin by describing a way of representing groups in computers, we calculate orbits, stabilizers in the basic form and by means of Schreier’s vectors. Later we make algorithms to work with primitive and transitive groups, thus arriving at the concept of BSGS, base and strong generator set, for permutation groups with the algorithm SCHREIERSIMS. In the end we work with group homomorphisms, we find the elements of a group through backtrack searches.O Teorema de Cayley nos permite representar um grupo finito como grupo de permutações de um conjunto finito de pontos. De forma geral, uma ação de um grupo finito G em um conjunto finito Ω, é descrita como uma aplicação do grupo G no grupo simétrico Sym(Ω). Neste trabalho vamos descrever alguns algoritmos para grupos de permutação e implementa-los no sistema GAP. Começamos descrevendo uma maneira de representar grupos em computadores, calculamos órbitas, estabilizadores na forma básica e por meio de vetores de Schreier. Posteriormente fazemos algoritmos para trabalhar com grupos transitivos e primitivos, chegando assim ao conceito de, base e conjunto gerador forte (BSGS) para grupos de permutação finitos com o algoritmo SCHREIER-SIMS. No final trabalhamos com homomorfismos de grupos e encontramos os elementos de um grupo mediante pesquisas backtrack.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2018-03-14T17:24:36Z No. of bitstreams: 2 Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-15T11:07:28Z (GMT) No. of bitstreams: 2 Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-03-15T11:07:28Z (GMT). No. of bitstreams: 2 Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-03-05Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTeoría de gruposGrupos de permutação finitosÁlgebra computacionalTheory of groupsFinite permutation groupsComputational algebraMATEMATICA::ALGEBRAComputação em grupos de permutação finitos com GAPComputation in finite permutation groups with GAPinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-6383368357733941552-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/f3b0f4ea-7126-4d7a-9864-37877e16b2f4/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/f864e348-978b-4f9e-96c6-c5be622d832e/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/d5da3eb1-8a33-4283-afc9-2e8e3d57ceda/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/bdc0b929-e843-47c8-a7f3-518ff5a2e407/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Angie Tatiana Suárez Romero - 2018.pdfDissertação - Angie Tatiana Suárez Romero - 2018.pdfapplication/pdf2209912http://repositorio.bc.ufg.br/tede/bitstreams/672dab1c-0460-45c9-b2fc-8572253b8469/download0ad7489cc1457ed892d896b3aa2f4885MD55tede/82202018-03-15 08:07:28.811http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8220http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-03-15T11:07:28Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Computação em grupos de permutação finitos com GAP
dc.title.alternative.eng.fl_str_mv Computation in finite permutation groups with GAP
title Computação em grupos de permutação finitos com GAP
spellingShingle Computação em grupos de permutação finitos com GAP
Romero, Angie Tatiana Suárez
Teoría de grupos
Grupos de permutação finitos
Álgebra computacional
Theory of groups
Finite permutation groups
Computational algebra
MATEMATICA::ALGEBRA
title_short Computação em grupos de permutação finitos com GAP
title_full Computação em grupos de permutação finitos com GAP
title_fullStr Computação em grupos de permutação finitos com GAP
title_full_unstemmed Computação em grupos de permutação finitos com GAP
title_sort Computação em grupos de permutação finitos com GAP
author Romero, Angie Tatiana Suárez
author_facet Romero, Angie Tatiana Suárez
author_role author
dc.contributor.advisor1.fl_str_mv Oliveira, Ricardo Nunes de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0563210461148997
dc.contributor.referee1.fl_str_mv Oliveira, Ricardo Nunes de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0563210461148997
dc.contributor.referee2.fl_str_mv Chaves, Ana Paula de Araújo
dc.contributor.referee3.fl_str_mv Bastos Junior, Raimundo de Araújo
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0851727986552359
dc.contributor.author.fl_str_mv Romero, Angie Tatiana Suárez
contributor_str_mv Oliveira, Ricardo Nunes de
Oliveira, Ricardo Nunes de
Chaves, Ana Paula de Araújo
Bastos Junior, Raimundo de Araújo
dc.subject.por.fl_str_mv Teoría de grupos
Grupos de permutação finitos
Álgebra computacional
topic Teoría de grupos
Grupos de permutação finitos
Álgebra computacional
Theory of groups
Finite permutation groups
Computational algebra
MATEMATICA::ALGEBRA
dc.subject.eng.fl_str_mv Theory of groups
Finite permutation groups
Computational algebra
dc.subject.cnpq.fl_str_mv MATEMATICA::ALGEBRA
description Cayley’s theorem allows us to represent a finite group as a permutations group of a finite set of points. In general, an action of a finite group G in a finite set, is described as an application of the group G in the symmetric group Sym(Ω). In this work we will describe some algorithms for permutation groups and implement them in the GAP system. We begin by describing a way of representing groups in computers, we calculate orbits, stabilizers in the basic form and by means of Schreier’s vectors. Later we make algorithms to work with primitive and transitive groups, thus arriving at the concept of BSGS, base and strong generator set, for permutation groups with the algorithm SCHREIERSIMS. In the end we work with group homomorphisms, we find the elements of a group through backtrack searches.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-03-15T11:07:28Z
dc.date.issued.fl_str_mv 2018-03-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROMERO, A. T. S. Computação em grupos de permutação finitos com GAP. 2018. 101 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/8220
dc.identifier.dark.fl_str_mv ark:/38995/001300000cksb
identifier_str_mv ROMERO, A. T. S. Computação em grupos de permutação finitos com GAP. 2018. 101 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.
ark:/38995/001300000cksb
url http://repositorio.bc.ufg.br/tede/handle/tede/8220
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -6383368357733941552
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/f3b0f4ea-7126-4d7a-9864-37877e16b2f4/download
http://repositorio.bc.ufg.br/tede/bitstreams/f864e348-978b-4f9e-96c6-c5be622d832e/download
http://repositorio.bc.ufg.br/tede/bitstreams/d5da3eb1-8a33-4283-afc9-2e8e3d57ceda/download
http://repositorio.bc.ufg.br/tede/bitstreams/bdc0b929-e843-47c8-a7f3-518ff5a2e407/download
http://repositorio.bc.ufg.br/tede/bitstreams/672dab1c-0460-45c9-b2fc-8572253b8469/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
0ad7489cc1457ed892d896b3aa2f4885
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172633613828096