Computação em grupos de permutação finitos com GAP
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000cksb |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/8220 |
Resumo: | Cayley’s theorem allows us to represent a finite group as a permutations group of a finite set of points. In general, an action of a finite group G in a finite set, is described as an application of the group G in the symmetric group Sym(Ω). In this work we will describe some algorithms for permutation groups and implement them in the GAP system. We begin by describing a way of representing groups in computers, we calculate orbits, stabilizers in the basic form and by means of Schreier’s vectors. Later we make algorithms to work with primitive and transitive groups, thus arriving at the concept of BSGS, base and strong generator set, for permutation groups with the algorithm SCHREIERSIMS. In the end we work with group homomorphisms, we find the elements of a group through backtrack searches. |
id |
UFG-2_919c5b1a2d28d296daa0e1d73576552e |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/8220 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Oliveira, Ricardo Nunes dehttp://lattes.cnpq.br/0563210461148997Oliveira, Ricardo Nunes dehttp://lattes.cnpq.br/0563210461148997Chaves, Ana Paula de AraújoBastos Junior, Raimundo de Araújohttp://lattes.cnpq.br/0851727986552359Romero, Angie Tatiana Suárez2018-03-15T11:07:28Z2018-03-05ROMERO, A. T. S. Computação em grupos de permutação finitos com GAP. 2018. 101 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/8220ark:/38995/001300000cksbCayley’s theorem allows us to represent a finite group as a permutations group of a finite set of points. In general, an action of a finite group G in a finite set, is described as an application of the group G in the symmetric group Sym(Ω). In this work we will describe some algorithms for permutation groups and implement them in the GAP system. We begin by describing a way of representing groups in computers, we calculate orbits, stabilizers in the basic form and by means of Schreier’s vectors. Later we make algorithms to work with primitive and transitive groups, thus arriving at the concept of BSGS, base and strong generator set, for permutation groups with the algorithm SCHREIERSIMS. In the end we work with group homomorphisms, we find the elements of a group through backtrack searches.O Teorema de Cayley nos permite representar um grupo finito como grupo de permutações de um conjunto finito de pontos. De forma geral, uma ação de um grupo finito G em um conjunto finito Ω, é descrita como uma aplicação do grupo G no grupo simétrico Sym(Ω). Neste trabalho vamos descrever alguns algoritmos para grupos de permutação e implementa-los no sistema GAP. Começamos descrevendo uma maneira de representar grupos em computadores, calculamos órbitas, estabilizadores na forma básica e por meio de vetores de Schreier. Posteriormente fazemos algoritmos para trabalhar com grupos transitivos e primitivos, chegando assim ao conceito de, base e conjunto gerador forte (BSGS) para grupos de permutação finitos com o algoritmo SCHREIER-SIMS. No final trabalhamos com homomorfismos de grupos e encontramos os elementos de um grupo mediante pesquisas backtrack.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2018-03-14T17:24:36Z No. of bitstreams: 2 Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-15T11:07:28Z (GMT) No. of bitstreams: 2 Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-03-15T11:07:28Z (GMT). No. of bitstreams: 2 Dissertação - Angie Tatiana Suárez Romero - 2018.pdf: 2209912 bytes, checksum: 0ad7489cc1457ed892d896b3aa2f4885 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-03-05Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessTeoría de gruposGrupos de permutação finitosÁlgebra computacionalTheory of groupsFinite permutation groupsComputational algebraMATEMATICA::ALGEBRAComputação em grupos de permutação finitos com GAPComputation in finite permutation groups with GAPinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-6383368357733941552-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/f3b0f4ea-7126-4d7a-9864-37877e16b2f4/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/f864e348-978b-4f9e-96c6-c5be622d832e/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/d5da3eb1-8a33-4283-afc9-2e8e3d57ceda/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/bdc0b929-e843-47c8-a7f3-518ff5a2e407/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Angie Tatiana Suárez Romero - 2018.pdfDissertação - Angie Tatiana Suárez Romero - 2018.pdfapplication/pdf2209912http://repositorio.bc.ufg.br/tede/bitstreams/672dab1c-0460-45c9-b2fc-8572253b8469/download0ad7489cc1457ed892d896b3aa2f4885MD55tede/82202018-03-15 08:07:28.811http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8220http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-03-15T11:07:28Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Computação em grupos de permutação finitos com GAP |
dc.title.alternative.eng.fl_str_mv |
Computation in finite permutation groups with GAP |
title |
Computação em grupos de permutação finitos com GAP |
spellingShingle |
Computação em grupos de permutação finitos com GAP Romero, Angie Tatiana Suárez Teoría de grupos Grupos de permutação finitos Álgebra computacional Theory of groups Finite permutation groups Computational algebra MATEMATICA::ALGEBRA |
title_short |
Computação em grupos de permutação finitos com GAP |
title_full |
Computação em grupos de permutação finitos com GAP |
title_fullStr |
Computação em grupos de permutação finitos com GAP |
title_full_unstemmed |
Computação em grupos de permutação finitos com GAP |
title_sort |
Computação em grupos de permutação finitos com GAP |
author |
Romero, Angie Tatiana Suárez |
author_facet |
Romero, Angie Tatiana Suárez |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Oliveira, Ricardo Nunes de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0563210461148997 |
dc.contributor.referee1.fl_str_mv |
Oliveira, Ricardo Nunes de |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0563210461148997 |
dc.contributor.referee2.fl_str_mv |
Chaves, Ana Paula de Araújo |
dc.contributor.referee3.fl_str_mv |
Bastos Junior, Raimundo de Araújo |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0851727986552359 |
dc.contributor.author.fl_str_mv |
Romero, Angie Tatiana Suárez |
contributor_str_mv |
Oliveira, Ricardo Nunes de Oliveira, Ricardo Nunes de Chaves, Ana Paula de Araújo Bastos Junior, Raimundo de Araújo |
dc.subject.por.fl_str_mv |
Teoría de grupos Grupos de permutação finitos Álgebra computacional |
topic |
Teoría de grupos Grupos de permutação finitos Álgebra computacional Theory of groups Finite permutation groups Computational algebra MATEMATICA::ALGEBRA |
dc.subject.eng.fl_str_mv |
Theory of groups Finite permutation groups Computational algebra |
dc.subject.cnpq.fl_str_mv |
MATEMATICA::ALGEBRA |
description |
Cayley’s theorem allows us to represent a finite group as a permutations group of a finite set of points. In general, an action of a finite group G in a finite set, is described as an application of the group G in the symmetric group Sym(Ω). In this work we will describe some algorithms for permutation groups and implement them in the GAP system. We begin by describing a way of representing groups in computers, we calculate orbits, stabilizers in the basic form and by means of Schreier’s vectors. Later we make algorithms to work with primitive and transitive groups, thus arriving at the concept of BSGS, base and strong generator set, for permutation groups with the algorithm SCHREIERSIMS. In the end we work with group homomorphisms, we find the elements of a group through backtrack searches. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-03-15T11:07:28Z |
dc.date.issued.fl_str_mv |
2018-03-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ROMERO, A. T. S. Computação em grupos de permutação finitos com GAP. 2018. 101 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/8220 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000cksb |
identifier_str_mv |
ROMERO, A. T. S. Computação em grupos de permutação finitos com GAP. 2018. 101 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018. ark:/38995/001300000cksb |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/8220 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-6383368357733941552 |
dc.relation.sponsorship.fl_str_mv |
-2555911436985713659 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/f3b0f4ea-7126-4d7a-9864-37877e16b2f4/download http://repositorio.bc.ufg.br/tede/bitstreams/f864e348-978b-4f9e-96c6-c5be622d832e/download http://repositorio.bc.ufg.br/tede/bitstreams/d5da3eb1-8a33-4283-afc9-2e8e3d57ceda/download http://repositorio.bc.ufg.br/tede/bitstreams/bdc0b929-e843-47c8-a7f3-518ff5a2e407/download http://repositorio.bc.ufg.br/tede/bitstreams/672dab1c-0460-45c9-b2fc-8572253b8469/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 0ad7489cc1457ed892d896b3aa2f4885 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172633613828096 |