Análise da fidelidade pelo comportamento dos usuários do twitter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000009tm7 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/7893 |
Resumo: | Users influence analysis over other users has been highlighted in studies involving online social networks, especially for the social network known as Twitter. However, there is still room for studies which analyze the influence that a user a exerts on another user e, based on the frequency of interactions from e dedicated to a in the social network. In the case of Twitter, three interactions are commonly used by users: the like, the mention and the retweet. This work assumes that a direct way of measuring the influence of a user a over another user e on Twitter is to observe the number of interactions of e with a over time. In this sense, a new concept called loyalty is proposed to define a specific and personalized type of influence, in which users, through their interactions, demonstrate preference by some peers in the social network (i.e., through the frequency of the interactions). Three aspects of loyalty were analyzed: i) intensity of interaction with the preferred user; ii) probability of interaction with users with whom there is loyalty, and iii) predictability of user interactions with their peers. Experiments done on a large sample of Twitter users reveal that the vast majority of users have loyalty to some user. In addition, the type of interaction and cultural aspects such as the written language used in the tweets differently affect the three aspects of fidelity considered. The paper also offers suggestions on how information derived from loyalty may be useful for future work related to influence on Twitter. |
id |
UFG-2_a64cb8fa99a6ed3698afb243edb5be55 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/7893 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Rosa, Thierson Coutohttp://lattes.cnpq.br/4414718560764818Camilo Júnior, Celso Gonçalveshttp://lattes.cnpq.br/6776569904919279Rosa, Thierson Coutohttp://lattes.cnpq.br/4414718560764818Camilo Júnior, Celso Gonçalveshttp://lattes.cnpq.br/6776569904919279Fernandes, Deborah Silva AlvesOliveira, David Braga Fernandes dehttp://lattes.cnpq.br/6143153274833914Matos Júnior, João Batista Pereira2017-10-20T10:12:26Z2017-09-15MATOS JÚNIOR, J. B. P. Análise da fidelidade pelo comportamento dos usuários do twitter. 2017. 102 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/7893ark:/38995/0013000009tm7Users influence analysis over other users has been highlighted in studies involving online social networks, especially for the social network known as Twitter. However, there is still room for studies which analyze the influence that a user a exerts on another user e, based on the frequency of interactions from e dedicated to a in the social network. In the case of Twitter, three interactions are commonly used by users: the like, the mention and the retweet. This work assumes that a direct way of measuring the influence of a user a over another user e on Twitter is to observe the number of interactions of e with a over time. In this sense, a new concept called loyalty is proposed to define a specific and personalized type of influence, in which users, through their interactions, demonstrate preference by some peers in the social network (i.e., through the frequency of the interactions). Three aspects of loyalty were analyzed: i) intensity of interaction with the preferred user; ii) probability of interaction with users with whom there is loyalty, and iii) predictability of user interactions with their peers. Experiments done on a large sample of Twitter users reveal that the vast majority of users have loyalty to some user. In addition, the type of interaction and cultural aspects such as the written language used in the tweets differently affect the three aspects of fidelity considered. The paper also offers suggestions on how information derived from loyalty may be useful for future work related to influence on Twitter.Análise da Fidelidade no Comportamento dos Usuários do Twitter– Um Estudo a Respeito da Influência Social com uma Visão Local Para Redes Sociais Online. A análise da influência de usuários sobre outros tem tido destaque em estudos envolvendo as redes sociais online, em especial a rede social Twitter. Entretanto, ainda há carência de trabalhos que analisem a influência que um usuário a tem sobre outro usuário e, com base na quantidade de interações que e tem com a na rede social. No caso do Twitter, três interações são comumente utilizadas pelos usuários: o curtir (ou gostar), o retweet e a menção. Este trabalho parte do princípio que uma forma direta de avaliar a influência que um usuário a tem sobre um usuário e no Twitter é observar o número de interações de e com a ao longo do tempo. Nesse sentido, propõe-se um novo conceito, denominado fidelidade, para definir um tipo específico e personalizado de influência, em que os usuários, por meio de suas interações, demonstram preferência (através da frequência de interações) por alguns de seus pares na rede social. Analisou-se três aspectos da fidelidade: i) intensidade de interação com o usuário preferido; ii) probabilidade de interação com usuários aos quais há fidelidade e iii) previsibilidade do usuário ao interagir com seus pares. Experimentos feitos em uma grande amostra de usuários, revelam que a grande maioria dos usuários têm fidelidade com algum outro usuário. Além disso, o tipo de interação e aspectos culturais como a língua escrita utilizada afetam de modo diverso os três aspectos de fidelidade considerados. O trabalho também apresenta sugestões de como as informações derivadas sobre a fidelidade podem ser úteis para trabalhos futuros relacionados à influência no Twitter.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-10-19T16:57:21Z No. of bitstreams: 2 Dissertação - João Batista Pereira Matos Júnior - 2017.pdf: 8366739 bytes, checksum: 13cc5b776da9444f310561caaa0e86d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-10-20T10:12:26Z (GMT) No. of bitstreams: 2 Dissertação - João Batista Pereira Matos Júnior - 2017.pdf: 8366739 bytes, checksum: 13cc5b776da9444f310561caaa0e86d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-10-20T10:12:26Z (GMT). No. of bitstreams: 2 Dissertação - João Batista Pereira Matos Júnior - 2017.pdf: 8366739 bytes, checksum: 13cc5b776da9444f310561caaa0e86d4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-09-15Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessInfluência socialFidelidadePersonalizaçãoRedes sociaisTwitterComportamento de usuárioLoyaltyPersonalizationSocial networksTwitterUser behaviorSocial influenceCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAnálise da fidelidade pelo comportamento dos usuários do twitterAnalysis of the loyalty by the behavior of twitter usersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-77122667346336447683671711205811204509-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/10df8278-c57e-437a-b075-49239d16a94e/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/0d577409-4d00-473c-a835-330c1dd35575/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/90e7d891-b7fa-4f10-a834-c5b3cca20250/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/9fedb3a9-3a87-4652-a3f6-02258d6112ad/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - João Batista Pereira Matos Júnior - 2017.pdfDissertação - João Batista Pereira Matos Júnior - 2017.pdfapplication/pdf8366739http://repositorio.bc.ufg.br/tede/bitstreams/7aae881d-cd45-4efa-a605-9823c0209690/download13cc5b776da9444f310561caaa0e86d4MD55tede/78932017-10-20 08:12:26.474http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7893http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-10-20T10:12:26Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Análise da fidelidade pelo comportamento dos usuários do twitter |
dc.title.alternative.eng.fl_str_mv |
Analysis of the loyalty by the behavior of twitter users |
title |
Análise da fidelidade pelo comportamento dos usuários do twitter |
spellingShingle |
Análise da fidelidade pelo comportamento dos usuários do twitter Matos Júnior, João Batista Pereira Influência social Fidelidade Personalização Redes sociais Comportamento de usuário Loyalty Personalization Social networks User behavior Social influence CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Análise da fidelidade pelo comportamento dos usuários do twitter |
title_full |
Análise da fidelidade pelo comportamento dos usuários do twitter |
title_fullStr |
Análise da fidelidade pelo comportamento dos usuários do twitter |
title_full_unstemmed |
Análise da fidelidade pelo comportamento dos usuários do twitter |
title_sort |
Análise da fidelidade pelo comportamento dos usuários do twitter |
author |
Matos Júnior, João Batista Pereira |
author_facet |
Matos Júnior, João Batista Pereira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Rosa, Thierson Couto |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4414718560764818 |
dc.contributor.advisor-co1.fl_str_mv |
Camilo Júnior, Celso Gonçalves |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6776569904919279 |
dc.contributor.referee1.fl_str_mv |
Rosa, Thierson Couto |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/4414718560764818 |
dc.contributor.referee2.fl_str_mv |
Camilo Júnior, Celso Gonçalves |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/6776569904919279 |
dc.contributor.referee3.fl_str_mv |
Fernandes, Deborah Silva Alves |
dc.contributor.referee4.fl_str_mv |
Oliveira, David Braga Fernandes de |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6143153274833914 |
dc.contributor.author.fl_str_mv |
Matos Júnior, João Batista Pereira |
contributor_str_mv |
Rosa, Thierson Couto Camilo Júnior, Celso Gonçalves Rosa, Thierson Couto Camilo Júnior, Celso Gonçalves Fernandes, Deborah Silva Alves Oliveira, David Braga Fernandes de |
dc.subject.por.fl_str_mv |
Influência social Fidelidade Personalização Redes sociais Comportamento de usuário Loyalty Personalization Social networks User behavior |
topic |
Influência social Fidelidade Personalização Redes sociais Comportamento de usuário Loyalty Personalization Social networks User behavior Social influence CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Social influence |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Users influence analysis over other users has been highlighted in studies involving online social networks, especially for the social network known as Twitter. However, there is still room for studies which analyze the influence that a user a exerts on another user e, based on the frequency of interactions from e dedicated to a in the social network. In the case of Twitter, three interactions are commonly used by users: the like, the mention and the retweet. This work assumes that a direct way of measuring the influence of a user a over another user e on Twitter is to observe the number of interactions of e with a over time. In this sense, a new concept called loyalty is proposed to define a specific and personalized type of influence, in which users, through their interactions, demonstrate preference by some peers in the social network (i.e., through the frequency of the interactions). Three aspects of loyalty were analyzed: i) intensity of interaction with the preferred user; ii) probability of interaction with users with whom there is loyalty, and iii) predictability of user interactions with their peers. Experiments done on a large sample of Twitter users reveal that the vast majority of users have loyalty to some user. In addition, the type of interaction and cultural aspects such as the written language used in the tweets differently affect the three aspects of fidelity considered. The paper also offers suggestions on how information derived from loyalty may be useful for future work related to influence on Twitter. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-10-20T10:12:26Z |
dc.date.issued.fl_str_mv |
2017-09-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MATOS JÚNIOR, J. B. P. Análise da fidelidade pelo comportamento dos usuários do twitter. 2017. 102 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2017. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/7893 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000009tm7 |
identifier_str_mv |
MATOS JÚNIOR, J. B. P. Análise da fidelidade pelo comportamento dos usuários do twitter. 2017. 102 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2017. ark:/38995/0013000009tm7 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/7893 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-3303550325223384799 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-7712266734633644768 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.relation.sponsorship.fl_str_mv |
-2555911436985713659 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/10df8278-c57e-437a-b075-49239d16a94e/download http://repositorio.bc.ufg.br/tede/bitstreams/0d577409-4d00-473c-a835-330c1dd35575/download http://repositorio.bc.ufg.br/tede/bitstreams/90e7d891-b7fa-4f10-a834-c5b3cca20250/download http://repositorio.bc.ufg.br/tede/bitstreams/9fedb3a9-3a87-4652-a3f6-02258d6112ad/download http://repositorio.bc.ufg.br/tede/bitstreams/7aae881d-cd45-4efa-a605-9823c0209690/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 13cc5b776da9444f310561caaa0e86d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172615496531968 |