On the classification of Ricci solitons and Yamabe solitons

Detalhes bibliográficos
Autor(a) principal: Contreras, Jeferson Arley Poveda
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000003n1f
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/12859
Resumo: In this work, we will study the self-similar solutions of both Ricci flow and Yamabe flow. These solutions are also known as Ricci and Yamabe soliton, respectively. Inspired by the divergence equation used by Robinson in his demonstration of the uniqueness of static black holes and by Brendle’s classification of steady Ricci solitons, we will make some important characterizations of these solitons. We prove that four-dimensional gradient Yamabe solitons must have a Yamabe metric, provided that an asymptotic condition holds. Inspired by the geometry of the cigar soliton, we demonstrate that a gradient steady Ricci soliton is either Ricci flat with a constant potential function or a quotient of the product steady soliton N n−1×R, where N n−1 is Ricci flat, or isometric to the Bryant soliton. In the final Chapter, we prove some rigidity results for shrinking and expanding Ricci solitons.
id UFG-2_dbccf0255ab9dad147873f514583d12d
oai_identifier_str oai:repositorio.bc.ufg.br:tede/12859
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Leandro Neto, Beneditohttp://lattes.cnpq.br/3393448440968708Leandro Neto, BeneditoSantos, João Paulo doRibeiro Júnior, Ernani de SousaTenenblat, KetiBarboza, Marcelo Bezerrahttp://lattes.cnpq.br/2968572806217207Contreras, Jeferson Arley Poveda2023-05-26T11:16:29Z2023-05-26T11:16:29Z2023-03-20CONTRERAS, J. A. P. On the classification of Ricci solitons and Yamabe solitons. 2023. 76 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2023.http://repositorio.bc.ufg.br/tede/handle/tede/12859ark:/38995/0013000003n1fIn this work, we will study the self-similar solutions of both Ricci flow and Yamabe flow. These solutions are also known as Ricci and Yamabe soliton, respectively. Inspired by the divergence equation used by Robinson in his demonstration of the uniqueness of static black holes and by Brendle’s classification of steady Ricci solitons, we will make some important characterizations of these solitons. We prove that four-dimensional gradient Yamabe solitons must have a Yamabe metric, provided that an asymptotic condition holds. Inspired by the geometry of the cigar soliton, we demonstrate that a gradient steady Ricci soliton is either Ricci flat with a constant potential function or a quotient of the product steady soliton N n−1×R, where N n−1 is Ricci flat, or isometric to the Bryant soliton. In the final Chapter, we prove some rigidity results for shrinking and expanding Ricci solitons.Neste trabalho, estudaremos as soluções autossimilares tanto do fluxo de Ricci quanto do fluxo de Yamabe. Essas soluções também são conhecidas como Ricci e Yamabe soliton, respectivamente. Inspirados na equação da divergência usada por Robinson em sua demonstração da unicidade dos buracos negros estáticos e na classificação de Brendle dos solitons estáveis de Ricci, faremos algumas caracterizações importantes desses solitons. Provamos que solitons de Yamabe gradientes quadridimensionais devem ter uma métrica de Yamabe, desde que uma condição assintótica seja válida. Inspirados na geometria do soliton de charuto, demonstramos que um soliton de Ricci gradiente estável é Ricci-flat com uma função potencial constante ou um quociente do produto soliton estável N n−1×R , onde N n−1 é Ricci-flat, ou isométrico ao soliton de Bryant. No capítulo final, provamos alguns resultados de rigidez para solitons de Ricci contraídos e expandidos.Submitted by Dayane Basílio (dayanebasilio@ufg.br) on 2023-05-25T14:45:11Z No. of bitstreams: 2 Tese - Jeferson Arley Poveda Contreras - 2023.pdf: 889689 bytes, checksum: 44f8cbb5367d2fc82562af1fa1d83ba1 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2023-05-26T11:16:29Z (GMT) No. of bitstreams: 2 Tese - Jeferson Arley Poveda Contreras - 2023.pdf: 889689 bytes, checksum: 44f8cbb5367d2fc82562af1fa1d83ba1 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2023-05-26T11:16:29Z (GMT). No. of bitstreams: 2 Tese - Jeferson Arley Poveda Contreras - 2023.pdf: 889689 bytes, checksum: 44f8cbb5367d2fc82562af1fa1d83ba1 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2023-03-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RMG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRicci solitonYamabe solitonSteadyShrinkingExpandingPinchingSoliton de RicciSoliton de YamabeCIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICAOn the classification of Ricci solitons and Yamabe solitonsSobre a classificação de solitons de Ricci e solitons de Yamabeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis70500500500500277081reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/54cfc365-41dc-4273-ba23-b26541d2ce6c/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/adb05b20-b82d-45bf-bab6-802218f1eaed/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALTese - Jeferson Arley Poveda Contreras - 2023.pdfTese - Jeferson Arley Poveda Contreras - 2023.pdfapplication/pdf889689http://repositorio.bc.ufg.br/tede/bitstreams/b9b40f2d-a859-4089-bfdd-a6f591dcf3c5/download44f8cbb5367d2fc82562af1fa1d83ba1MD53tede/128592023-05-26 08:16:29.655http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/12859http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2023-05-26T11:16:29Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv On the classification of Ricci solitons and Yamabe solitons
dc.title.alternative.por.fl_str_mv Sobre a classificação de solitons de Ricci e solitons de Yamabe
title On the classification of Ricci solitons and Yamabe solitons
spellingShingle On the classification of Ricci solitons and Yamabe solitons
Contreras, Jeferson Arley Poveda
Ricci soliton
Yamabe soliton
Steady
Shrinking
Expanding
Pinching
Soliton de Ricci
Soliton de Yamabe
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA
title_short On the classification of Ricci solitons and Yamabe solitons
title_full On the classification of Ricci solitons and Yamabe solitons
title_fullStr On the classification of Ricci solitons and Yamabe solitons
title_full_unstemmed On the classification of Ricci solitons and Yamabe solitons
title_sort On the classification of Ricci solitons and Yamabe solitons
author Contreras, Jeferson Arley Poveda
author_facet Contreras, Jeferson Arley Poveda
author_role author
dc.contributor.advisor1.fl_str_mv Leandro Neto, Benedito
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3393448440968708
dc.contributor.referee1.fl_str_mv Leandro Neto, Benedito
dc.contributor.referee2.fl_str_mv Santos, João Paulo do
dc.contributor.referee3.fl_str_mv Ribeiro Júnior, Ernani de Sousa
dc.contributor.referee4.fl_str_mv Tenenblat, Keti
dc.contributor.referee5.fl_str_mv Barboza, Marcelo Bezerra
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2968572806217207
dc.contributor.author.fl_str_mv Contreras, Jeferson Arley Poveda
contributor_str_mv Leandro Neto, Benedito
Leandro Neto, Benedito
Santos, João Paulo do
Ribeiro Júnior, Ernani de Sousa
Tenenblat, Keti
Barboza, Marcelo Bezerra
dc.subject.por.fl_str_mv Ricci soliton
Yamabe soliton
Steady
Shrinking
topic Ricci soliton
Yamabe soliton
Steady
Shrinking
Expanding
Pinching
Soliton de Ricci
Soliton de Yamabe
CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA
dc.subject.eng.fl_str_mv Expanding
Pinching
Soliton de Ricci
Soliton de Yamabe
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA::GEOMETRIA E TOPOLOGIA::TOPOLOGIA ALGEBRICA
description In this work, we will study the self-similar solutions of both Ricci flow and Yamabe flow. These solutions are also known as Ricci and Yamabe soliton, respectively. Inspired by the divergence equation used by Robinson in his demonstration of the uniqueness of static black holes and by Brendle’s classification of steady Ricci solitons, we will make some important characterizations of these solitons. We prove that four-dimensional gradient Yamabe solitons must have a Yamabe metric, provided that an asymptotic condition holds. Inspired by the geometry of the cigar soliton, we demonstrate that a gradient steady Ricci soliton is either Ricci flat with a constant potential function or a quotient of the product steady soliton N n−1×R, where N n−1 is Ricci flat, or isometric to the Bryant soliton. In the final Chapter, we prove some rigidity results for shrinking and expanding Ricci solitons.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-05-26T11:16:29Z
dc.date.available.fl_str_mv 2023-05-26T11:16:29Z
dc.date.issued.fl_str_mv 2023-03-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CONTRERAS, J. A. P. On the classification of Ricci solitons and Yamabe solitons. 2023. 76 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2023.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/12859
dc.identifier.dark.fl_str_mv ark:/38995/0013000003n1f
identifier_str_mv CONTRERAS, J. A. P. On the classification of Ricci solitons and Yamabe solitons. 2023. 76 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2023.
ark:/38995/0013000003n1f
url http://repositorio.bc.ufg.br/tede/handle/tede/12859
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv 70
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 27
dc.relation.cnpq.fl_str_mv 708
dc.relation.sponsorship.fl_str_mv 1
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RMG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/54cfc365-41dc-4273-ba23-b26541d2ce6c/download
http://repositorio.bc.ufg.br/tede/bitstreams/adb05b20-b82d-45bf-bab6-802218f1eaed/download
http://repositorio.bc.ufg.br/tede/bitstreams/b9b40f2d-a859-4089-bfdd-a6f591dcf3c5/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
8a4605be74aa9ea9d79846c1fba20a33
44f8cbb5367d2fc82562af1fa1d83ba1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172547728113664