Estimação de máxima verossimilhança via algoritmo EM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/12742 |
Resumo: | Este trabalho tem como objetivo apresentar o algoritmo EM, que é uma ferramenta de software utilizada para o cálculo do estimador de máxima verossimilhança (MLE) de forma iterativa, principalmente em problemas que envolvem dados perdidos. Para isso, precisamos obter o conjunto de dados completo, que é o conjunto de dados observados aumentado com o conjunto de dados ausentes, a partir daí obter a função log-verossimilhança associada aos dados completos. Sabemos que este algoritmo converge seguramente para MLE e se baseia na ideia de substituir uma maximização difícil por uma sequência de maximizações mais fáceis, envolvendo duas etapas, a etapa “E” (Expectativa) calcula o valor esperado do log de verossimilhança completo , e a etapa “M” (Maximização), que encontra sua plenitude. As etapas são repetidas até que a convergência seja alcançada. Antes de exemplificar o cálculo do MLE via algoritmo EM, defina os modelos hierárquicos que têm a vantagem de modelar processos complicados por meio de uma sequência de modelos relativamente simples, colocados em uma hierarquia. Além disso, lidar com a hierarquia não é mais difícil de lidar com distribuições marginais ou condicionais. Como exemplo de cálculo de MLE via algoritmo EM, utilizamos modelos de regressão, onde os erros assumem distribuição student-t, que além de ser simétrica, possui caudas mais pesadas (robustas para acomodar valores extremos). Também apresentaremos aplicativos para essas distribuições. |
id |
UFJF_3933050e777a7713138e29ba3c129ddc |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/12742 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Ferreira, Clécio da Silvahttp://lattes.cnpq.br/7842524715253287Ferreira, Clécio da Silvahttp://lattes.cnpq.br/7842524715253287Soares, Tufi Machadohttp://lattes.cnpq.br/1310951746056442Zeller, Camila Borellihttp://lattes.cnpq.br/66714054http://lattes.cnpq.br/4556006350258674Faria, Víctor Basílio2021-05-24T21:09:42Z2021-01-012021-05-24T21:09:42Z2011-07-01https://repositorio.ufjf.br/jspui/handle/ufjf/12742Este trabalho tem como objetivo apresentar o algoritmo EM, que é uma ferramenta de software utilizada para o cálculo do estimador de máxima verossimilhança (MLE) de forma iterativa, principalmente em problemas que envolvem dados perdidos. Para isso, precisamos obter o conjunto de dados completo, que é o conjunto de dados observados aumentado com o conjunto de dados ausentes, a partir daí obter a função log-verossimilhança associada aos dados completos. Sabemos que este algoritmo converge seguramente para MLE e se baseia na ideia de substituir uma maximização difícil por uma sequência de maximizações mais fáceis, envolvendo duas etapas, a etapa “E” (Expectativa) calcula o valor esperado do log de verossimilhança completo , e a etapa “M” (Maximização), que encontra sua plenitude. As etapas são repetidas até que a convergência seja alcançada. Antes de exemplificar o cálculo do MLE via algoritmo EM, defina os modelos hierárquicos que têm a vantagem de modelar processos complicados por meio de uma sequência de modelos relativamente simples, colocados em uma hierarquia. Além disso, lidar com a hierarquia não é mais difícil de lidar com distribuições marginais ou condicionais. Como exemplo de cálculo de MLE via algoritmo EM, utilizamos modelos de regressão, onde os erros assumem distribuição student-t, que além de ser simétrica, possui caudas mais pesadas (robustas para acomodar valores extremos). Também apresentaremos aplicativos para essas distribuições.This paper aims to present the EM algorithm, which is a software tool used for calculating the maximum likelihood estimator (MLE) in an iterative manner, especially in problems involving missing data. For this we need to get the complete data set which is the set of observed data augmented with the set of missing data, from there get the log-likelihood function associated with complete data. We know that this algorithm converges surely to MLE and is based on the idea of replacing a difficult maximization by a sequence of maximizations easier, involving two steps, the step “E”(Expectation) calculates the expected value of the complete log likelihood, and the step “M”(Maximization), which finds its fullest. The steps are repeated until convergence is achieved. Before exemplify the calculation of MLE via EM algorithm, define the hier- archical models that have the advantage of modeling complicated processes through a sequence of relatively simple models, placed in a hierarchy. In addition, dealing with the hierarchy is no more difficult to deal with marginal or conditional distributions. As an example of calculating MLE via EM algorithm, we use regression models, where the errors take on student-t distribution, which in addition to being symmetrical, have heavier tails (robust to accommodate extreme values). We will also present applica- tions for these distribution.porUniversidade Federal de Juiz de Fora (UFJF)UFJFBrasilICE – Instituto de Ciências Exatashttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAEstimação de Máxima VerossimilhançaModelo t-StudentAlgoritmo EMModelos HierárquicosMaximum Likelihood EstimationStudent’s t-modelEM AlgorithmHierarchical ModelsEstimação de máxima verossimilhança via algoritmo EMinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALvictorbasiliofaria.pdfvictorbasiliofaria.pdfvictorbasiliofariaapplication/pdf688657https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/1/victorbasiliofaria.pdfe9f248ed0013d18a31ec9540b9e47169MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTvictorbasiliofaria.pdf.txtvictorbasiliofaria.pdf.txtExtracted texttext/plain66556https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/4/victorbasiliofaria.pdf.txt82e6cbe7ca58bd30c0f682d341ae3ea6MD54THUMBNAILvictorbasiliofaria.pdf.jpgvictorbasiliofaria.pdf.jpgGenerated Thumbnailimage/jpeg1106https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/5/victorbasiliofaria.pdf.jpgb791b6785786c44ebdf90fcd837d5becMD55ufjf/127422021-05-25 03:15:25.07oai:hermes.cpd.ufjf.br:ufjf/12742Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2021-05-25T06:15:25Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Estimação de máxima verossimilhança via algoritmo EM |
title |
Estimação de máxima verossimilhança via algoritmo EM |
spellingShingle |
Estimação de máxima verossimilhança via algoritmo EM Faria, Víctor Basílio CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA Estimação de Máxima Verossimilhança Modelo t-Student Algoritmo EM Modelos Hierárquicos Maximum Likelihood Estimation Student’s t-model EM Algorithm Hierarchical Models |
title_short |
Estimação de máxima verossimilhança via algoritmo EM |
title_full |
Estimação de máxima verossimilhança via algoritmo EM |
title_fullStr |
Estimação de máxima verossimilhança via algoritmo EM |
title_full_unstemmed |
Estimação de máxima verossimilhança via algoritmo EM |
title_sort |
Estimação de máxima verossimilhança via algoritmo EM |
author |
Faria, Víctor Basílio |
author_facet |
Faria, Víctor Basílio |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Ferreira, Clécio da Silva |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7842524715253287 |
dc.contributor.referee1.fl_str_mv |
Ferreira, Clécio da Silva |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/7842524715253287 |
dc.contributor.referee2.fl_str_mv |
Soares, Tufi Machado |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1310951746056442 |
dc.contributor.referee3.fl_str_mv |
Zeller, Camila Borelli |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/66714054 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4556006350258674 |
dc.contributor.author.fl_str_mv |
Faria, Víctor Basílio |
contributor_str_mv |
Ferreira, Clécio da Silva Ferreira, Clécio da Silva Soares, Tufi Machado Zeller, Camila Borelli |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA Estimação de Máxima Verossimilhança Modelo t-Student Algoritmo EM Modelos Hierárquicos Maximum Likelihood Estimation Student’s t-model EM Algorithm Hierarchical Models |
dc.subject.por.fl_str_mv |
Estimação de Máxima Verossimilhança Modelo t-Student Algoritmo EM Modelos Hierárquicos Maximum Likelihood Estimation Student’s t-model EM Algorithm Hierarchical Models |
description |
Este trabalho tem como objetivo apresentar o algoritmo EM, que é uma ferramenta de software utilizada para o cálculo do estimador de máxima verossimilhança (MLE) de forma iterativa, principalmente em problemas que envolvem dados perdidos. Para isso, precisamos obter o conjunto de dados completo, que é o conjunto de dados observados aumentado com o conjunto de dados ausentes, a partir daí obter a função log-verossimilhança associada aos dados completos. Sabemos que este algoritmo converge seguramente para MLE e se baseia na ideia de substituir uma maximização difícil por uma sequência de maximizações mais fáceis, envolvendo duas etapas, a etapa “E” (Expectativa) calcula o valor esperado do log de verossimilhança completo , e a etapa “M” (Maximização), que encontra sua plenitude. As etapas são repetidas até que a convergência seja alcançada. Antes de exemplificar o cálculo do MLE via algoritmo EM, defina os modelos hierárquicos que têm a vantagem de modelar processos complicados por meio de uma sequência de modelos relativamente simples, colocados em uma hierarquia. Além disso, lidar com a hierarquia não é mais difícil de lidar com distribuições marginais ou condicionais. Como exemplo de cálculo de MLE via algoritmo EM, utilizamos modelos de regressão, onde os erros assumem distribuição student-t, que além de ser simétrica, possui caudas mais pesadas (robustas para acomodar valores extremos). Também apresentaremos aplicativos para essas distribuições. |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-07-01 |
dc.date.accessioned.fl_str_mv |
2021-05-24T21:09:42Z |
dc.date.available.fl_str_mv |
2021-01-01 2021-05-24T21:09:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/12742 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/12742 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/1/victorbasiliofaria.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/2/license_rdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/3/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/4/victorbasiliofaria.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/12742/5/victorbasiliofaria.pdf.jpg |
bitstream.checksum.fl_str_mv |
e9f248ed0013d18a31ec9540b9e47169 e39d27027a6cc9cb039ad269a5db8e34 8a4605be74aa9ea9d79846c1fba20a33 82e6cbe7ca58bd30c0f682d341ae3ea6 b791b6785786c44ebdf90fcd837d5bec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813194005426470912 |