Otimização bioinspirada aplicada na localização de robôs móveis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/4174 |
Resumo: | O presente trabalho apresenta a adaptação e utilização de um algoritmo da área de inteligência artificial evolucionária, bioinspirado no sistema de ecolocalização de morcegos, para resolver o problema da localização global de robôs móveis em ambientes bidimensionais com mapas conhecidos. Sabe-se, por meio da literatura, que a localização de robôs baseada apenas em dedução via hodometria, do inglês deduced reckoning ou dead-reckoning, acumula diversos erros de origem estocástica, os quais não podem ser eliminados de maneira determinística, fazendo-se necessários métodos de filtragem estatística para a correta obtenção da localização. Dentre as diversas alternativas conhecidas para solucionar o problema de localização, escolheu-se o Método Recursivo de Monte Carlo, também denominado por Filtro de Partículas, para comparação com os resultados obtidos pelo algoritmo de morcego, por suas características multimodais e não-paramétricas, sendo este um algoritmo clássico na área de localização robótica. O algoritmo de morcegos, do inglês Bat Algorithm, é um método recursivo de otimização de estados de um sistema que se encontra num ambiente multimodal. É bioinspirado nos sistemas de ecolocalização encontradas em morcegos e outros animais na natureza. Nos resultados de comparação entre ambos os métodos, a técnica proposta demonstrou melhores resultados tanto para o erro entre a localização real e a estimada pelos métodos quanto para o número de iterações necessárias para alcançar a solução e, consequentemente, o tempo de convergência do algoritmo. Para o desenvolvimento deste trabalho, utilizou-se o programa Matlab R integrado com a plataforma ROS, juntamente com o robô móvel terrestre Pioneer P3-DX para os resultados simulados e reais. |
id |
UFJF_6809a73ab93bba38cd163de9dbd8340c |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/4174 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Marcato, André Luís Marqueshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4737297A6Silva Junior, Ivo Chaves dahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771513T6Nascimento, Tiago Pereirahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4129856E6Oliveira, Leonardo Willer dehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711128E4Olivi, Leonardo Rochahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4753185J6http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4445081J6Bastos, Lara Furtado2017-04-26T12:06:02Z2017-04-252017-04-26T12:06:02Z2016-09-08https://repositorio.ufjf.br/jspui/handle/ufjf/4174O presente trabalho apresenta a adaptação e utilização de um algoritmo da área de inteligência artificial evolucionária, bioinspirado no sistema de ecolocalização de morcegos, para resolver o problema da localização global de robôs móveis em ambientes bidimensionais com mapas conhecidos. Sabe-se, por meio da literatura, que a localização de robôs baseada apenas em dedução via hodometria, do inglês deduced reckoning ou dead-reckoning, acumula diversos erros de origem estocástica, os quais não podem ser eliminados de maneira determinística, fazendo-se necessários métodos de filtragem estatística para a correta obtenção da localização. Dentre as diversas alternativas conhecidas para solucionar o problema de localização, escolheu-se o Método Recursivo de Monte Carlo, também denominado por Filtro de Partículas, para comparação com os resultados obtidos pelo algoritmo de morcego, por suas características multimodais e não-paramétricas, sendo este um algoritmo clássico na área de localização robótica. O algoritmo de morcegos, do inglês Bat Algorithm, é um método recursivo de otimização de estados de um sistema que se encontra num ambiente multimodal. É bioinspirado nos sistemas de ecolocalização encontradas em morcegos e outros animais na natureza. Nos resultados de comparação entre ambos os métodos, a técnica proposta demonstrou melhores resultados tanto para o erro entre a localização real e a estimada pelos métodos quanto para o número de iterações necessárias para alcançar a solução e, consequentemente, o tempo de convergência do algoritmo. Para o desenvolvimento deste trabalho, utilizou-se o programa Matlab R integrado com a plataforma ROS, juntamente com o robô móvel terrestre Pioneer P3-DX para os resultados simulados e reais.This work presents the adaptation and use an algorithm from evolutionary artificial intelligence area, bioinspired in the echolocation system of bats to solve the problem of global location for mobile robots in two-dimensional environments with known maps. It is widely known in literature that the localization of robots based only on deduced reckoning accumulates many stochastic errors, which cannot be eliminated deterministically, requesting statistical filtering methods to obtain the correct location. Among the various alternatives known to solve the problem of localization, we chose the Recursive Method of Monte Carlo, also kown as Particle Filter, for comparison purposes with the results obtained by the Bat Algorithm, because of its multimodal and nonparametric features, and alse because it is a classic algorithm in robotics localization area. The Bat Algorithm is a recursive optimization method of system states immerse in multimodal environments. It is bioinspired in the echolocation systems found in bats and other animals in nature. In comparison results between the two methods, the proposed technique showed the best results for both localization error and the number of iterations required to reach the solution, and consequently the algorithm convergence time. To develop this work, the Matlab software was used with the ROS framework along with the terrestrial mobile robot Pioneer P3-DX for simulated and real results.porUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Engenharia ElétricaUFJFBrasilFaculdade de EngenhariaCNPQ::ENGENHARIAS::ENGENHARIA ELETRICALocalizaçãoRobô móvelAlgoritmo de morcegoFiltro de partículasAlgoritmo bioinspiradoLocalizationMobile robotBat algorithmParticle filterBioinspired algorithmOtimização bioinspirada aplicada na localização de robôs móveisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFTEXTlarafurtadobastos.pdf.txtlarafurtadobastos.pdf.txtExtracted texttext/plain125432https://repositorio.ufjf.br/jspui/bitstream/ufjf/4174/3/larafurtadobastos.pdf.txt4992ac9fe20625882184def8a7715a24MD53THUMBNAILlarafurtadobastos.pdf.jpglarafurtadobastos.pdf.jpgGenerated Thumbnailimage/jpeg1218https://repositorio.ufjf.br/jspui/bitstream/ufjf/4174/4/larafurtadobastos.pdf.jpg53d830a77f87480ca0d825bd1cc729f0MD54ORIGINALlarafurtadobastos.pdflarafurtadobastos.pdfapplication/pdf4369558https://repositorio.ufjf.br/jspui/bitstream/ufjf/4174/1/larafurtadobastos.pdf7b36e77b964a5ec919c2c9967a654a03MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82197https://repositorio.ufjf.br/jspui/bitstream/ufjf/4174/2/license.txt000e18a5aee6ca21bb5811ddf55fc37bMD52ufjf/41742019-06-16 05:39:58.543oai:hermes.cpd.ufjf.br:ufjf/4174TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHvv73vv71vIGRlc3RhIGxpY2Vu77+9YSwgdm9j77+9IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l077+9cmlvIApJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvIGRpcmVpdG8gbu+/vW8tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYe+/ve+/vW8gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLvv71uaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIO+/vXVkaW8gb3Ugdu+/vWRlby4KClZvY++/vSBjb25jb3JkYSBxdWUgbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXvv71kbywgdHJhbnNwb3IgYSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZh77+977+9by4gVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBKdWl6IGRlIEZvcmEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY++/vXBpYSBkZSBzdWEgcHVibGljYe+/ve+/vW8gcGFyYSBmaW5zIGRlIHNlZ3VyYW7vv71hLCBiYWNrLXVwIGUgcHJlc2VydmHvv73vv71vLiBWb2Pvv70gZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYe+/ve+/vW8g77+9IG9yaWdpbmFsIGUgcXVlIHZvY++/vSB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbu+/vWEuIFZvY++/vSB0YW1i77+9bSBkZWNsYXJhIHF1ZSBvIGRlcO+/vXNpdG8gZGEgc3VhIHB1YmxpY2Hvv73vv71vIG7vv71vLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5nde+/vW0uCgpDYXNvIGEgc3VhIHB1YmxpY2Hvv73vv71vIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2Pvv70gbu+/vW8gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9j77+9IGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3Pvv71vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIEp1aXogZGUgRm9yYSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgSnVpeiBkZSBGb3JhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2Hvv73vv71vLCBlIG7vv71vIGZhcu+/vSBxdWFscXVlciBhbHRlcmHvv73vv71vLCBhbO+/vW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbu+/vWEuCg==Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-06-16T08:39:58Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Otimização bioinspirada aplicada na localização de robôs móveis |
title |
Otimização bioinspirada aplicada na localização de robôs móveis |
spellingShingle |
Otimização bioinspirada aplicada na localização de robôs móveis Bastos, Lara Furtado CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Localização Robô móvel Algoritmo de morcego Filtro de partículas Algoritmo bioinspirado Localization Mobile robot Bat algorithm Particle filter Bioinspired algorithm |
title_short |
Otimização bioinspirada aplicada na localização de robôs móveis |
title_full |
Otimização bioinspirada aplicada na localização de robôs móveis |
title_fullStr |
Otimização bioinspirada aplicada na localização de robôs móveis |
title_full_unstemmed |
Otimização bioinspirada aplicada na localização de robôs móveis |
title_sort |
Otimização bioinspirada aplicada na localização de robôs móveis |
author |
Bastos, Lara Furtado |
author_facet |
Bastos, Lara Furtado |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Marcato, André Luís Marques |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4737297A6 |
dc.contributor.advisor-co1.fl_str_mv |
Silva Junior, Ivo Chaves da |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771513T6 |
dc.contributor.referee1.fl_str_mv |
Nascimento, Tiago Pereira |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4129856E6 |
dc.contributor.referee2.fl_str_mv |
Oliveira, Leonardo Willer de |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711128E4 |
dc.contributor.referee3.fl_str_mv |
Olivi, Leonardo Rocha |
dc.contributor.referee3Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4753185J6 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4445081J6 |
dc.contributor.author.fl_str_mv |
Bastos, Lara Furtado |
contributor_str_mv |
Marcato, André Luís Marques Silva Junior, Ivo Chaves da Nascimento, Tiago Pereira Oliveira, Leonardo Willer de Olivi, Leonardo Rocha |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Localização Robô móvel Algoritmo de morcego Filtro de partículas Algoritmo bioinspirado Localization Mobile robot Bat algorithm Particle filter Bioinspired algorithm |
dc.subject.por.fl_str_mv |
Localização Robô móvel Algoritmo de morcego Filtro de partículas Algoritmo bioinspirado Localization Mobile robot Bat algorithm Particle filter Bioinspired algorithm |
description |
O presente trabalho apresenta a adaptação e utilização de um algoritmo da área de inteligência artificial evolucionária, bioinspirado no sistema de ecolocalização de morcegos, para resolver o problema da localização global de robôs móveis em ambientes bidimensionais com mapas conhecidos. Sabe-se, por meio da literatura, que a localização de robôs baseada apenas em dedução via hodometria, do inglês deduced reckoning ou dead-reckoning, acumula diversos erros de origem estocástica, os quais não podem ser eliminados de maneira determinística, fazendo-se necessários métodos de filtragem estatística para a correta obtenção da localização. Dentre as diversas alternativas conhecidas para solucionar o problema de localização, escolheu-se o Método Recursivo de Monte Carlo, também denominado por Filtro de Partículas, para comparação com os resultados obtidos pelo algoritmo de morcego, por suas características multimodais e não-paramétricas, sendo este um algoritmo clássico na área de localização robótica. O algoritmo de morcegos, do inglês Bat Algorithm, é um método recursivo de otimização de estados de um sistema que se encontra num ambiente multimodal. É bioinspirado nos sistemas de ecolocalização encontradas em morcegos e outros animais na natureza. Nos resultados de comparação entre ambos os métodos, a técnica proposta demonstrou melhores resultados tanto para o erro entre a localização real e a estimada pelos métodos quanto para o número de iterações necessárias para alcançar a solução e, consequentemente, o tempo de convergência do algoritmo. Para o desenvolvimento deste trabalho, utilizou-se o programa Matlab R integrado com a plataforma ROS, juntamente com o robô móvel terrestre Pioneer P3-DX para os resultados simulados e reais. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-09-08 |
dc.date.accessioned.fl_str_mv |
2017-04-26T12:06:02Z |
dc.date.available.fl_str_mv |
2017-04-25 2017-04-26T12:06:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/4174 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/4174 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Faculdade de Engenharia |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/4174/3/larafurtadobastos.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/4174/4/larafurtadobastos.pdf.jpg https://repositorio.ufjf.br/jspui/bitstream/ufjf/4174/1/larafurtadobastos.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/4174/2/license.txt |
bitstream.checksum.fl_str_mv |
4992ac9fe20625882184def8a7715a24 53d830a77f87480ca0d825bd1cc729f0 7b36e77b964a5ec919c2c9967a654a03 000e18a5aee6ca21bb5811ddf55fc37b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193857105395712 |