Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods

Detalhes bibliográficos
Autor(a) principal: Gaio, Evandro Dias
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFJF
Texto Completo: https://repositorio.ufjf.br/jspui/handle/ufjf/11480
Resumo: O estudo e simulação de escoamentos sanguíneos no sistema cardiovascular (CS - Cardiovascular System) tem muitas aplicações, como estudos de patologias, planejamento de cirurgias e projeto de dispositivos médicos. O escoamento sanguíneo no CS pode ser considerado um problema de dinâmica dos fluidos, e no caso ótimo, um problema acoplado entre dinâmicas dos sólidos e dos fluidos, chamado de problema de interação fluido-estrutura (FSI - Fluid-Structure Interaction). Esse trabalho primeiro foca na solução de diferentes problemas de dinâmica dos fluidos, usando diferentes estabilizações numéricas para a solução da equação de Navier-Stokes através do método de Galerkin. Uma comparação usando tempo de CPU e erros para diferentes níveis de refinamento da malha é feita, como forma de avaliar e explorar a plataforma FEniCS e a função dos termos estabilizadores. Esse método pode ser usado na simulação de escoamento sanguíneo que considera um domínio de parede rígida. Entretanto, alguns autores dizem que a velocidade de escoamento e pressão sanguínea são fortemente influenciadas pela dinâmica das paredes. Por essa razão, na segunda parte deste trabalho, foi utilizado o método de momento acoplado (CMM-FSI - Coupled Momentum Method for FSI ) para resolver problemas de escoamento sanguíneo em artérias grandes e deformáveis. O CMM-FSI simplifica o processo de acoplamento fluido-estrutura quando utilizando o método dos elementos finitos devido a ser baseado em um acoplamento forte dos graus de liberdade nos domínios do fluido e do sólido. Isso pode ser feito acoplando a deformação da parede do vaso no nível variacional, como uma condição de contorno para o domínio do fluido e também mantendo a descrição de movimento (Euleriana) para uma malha fixa. A parte positiva do CMM-FSI é que demanda um esforço computacional muito menor, principalmente para modelos 3D, do que métodos Eulerianos-Lagrangiano arbitrários convencionais. Por outro lado, esse método pede que a ordem de aproximação polinomial dos elementos para pressão e velocidade sejam da mesma ordem. Dessa forma, uma formulação estabilizada de elementos finitos é usada. Toda a implementação numérica é feita usando Python e FEniCS, uma biblioteca de elementos finitos. Relações constitutivas de fluido Newtoniano e uma estrutura de parede fina são consideradas. Uma comparação é feita com a teoria de escoamento sanguíneo de Poiseuille e também com suposição de parede fixa. Os impactos de escolha da suposição de parede fixa e do modelo deformável são avaliados através de parâmetros hemodinâmicos, como picos de pressão durante a sístole e diástole e a velocidade de propagação de ondas do escoamento sanguíneo. Finalmente, o CMM-FSI é usado para realizar uma simulação em um modelo idealizado da artéria carótida comum com estenose. Os resultados obtidos neste trabalho estão condizentes com a literatura.
id UFJF_fbe43a1e28042c8a579a27aca466d59b
oai_identifier_str oai:hermes.cpd.ufjf.br:ufjf/11480
network_acronym_str UFJF
network_name_str Repositório Institucional da UFJF
repository_id_str
spelling Queiroz, Rafael Alves Bonfim dehttp://lattes.cnpq.br/8602778120667424Camata, José Jerônimohttp://lattes.cnpq.br/7065024769982205Elias, Renato Nascimentohttp://lattes.cnpq.br/0320983700665674Igreja, Iury Higor Aguiar dahttp://lattes.cnpq.br/6654924341615471http://lattes.cnpq.br/3169136706894483Gaio, Evandro Dias2019-12-19T16:17:31Z2019-12-182019-12-19T16:17:31Z2019-09-12https://repositorio.ufjf.br/jspui/handle/ufjf/11480O estudo e simulação de escoamentos sanguíneos no sistema cardiovascular (CS - Cardiovascular System) tem muitas aplicações, como estudos de patologias, planejamento de cirurgias e projeto de dispositivos médicos. O escoamento sanguíneo no CS pode ser considerado um problema de dinâmica dos fluidos, e no caso ótimo, um problema acoplado entre dinâmicas dos sólidos e dos fluidos, chamado de problema de interação fluido-estrutura (FSI - Fluid-Structure Interaction). Esse trabalho primeiro foca na solução de diferentes problemas de dinâmica dos fluidos, usando diferentes estabilizações numéricas para a solução da equação de Navier-Stokes através do método de Galerkin. Uma comparação usando tempo de CPU e erros para diferentes níveis de refinamento da malha é feita, como forma de avaliar e explorar a plataforma FEniCS e a função dos termos estabilizadores. Esse método pode ser usado na simulação de escoamento sanguíneo que considera um domínio de parede rígida. Entretanto, alguns autores dizem que a velocidade de escoamento e pressão sanguínea são fortemente influenciadas pela dinâmica das paredes. Por essa razão, na segunda parte deste trabalho, foi utilizado o método de momento acoplado (CMM-FSI - Coupled Momentum Method for FSI ) para resolver problemas de escoamento sanguíneo em artérias grandes e deformáveis. O CMM-FSI simplifica o processo de acoplamento fluido-estrutura quando utilizando o método dos elementos finitos devido a ser baseado em um acoplamento forte dos graus de liberdade nos domínios do fluido e do sólido. Isso pode ser feito acoplando a deformação da parede do vaso no nível variacional, como uma condição de contorno para o domínio do fluido e também mantendo a descrição de movimento (Euleriana) para uma malha fixa. A parte positiva do CMM-FSI é que demanda um esforço computacional muito menor, principalmente para modelos 3D, do que métodos Eulerianos-Lagrangiano arbitrários convencionais. Por outro lado, esse método pede que a ordem de aproximação polinomial dos elementos para pressão e velocidade sejam da mesma ordem. Dessa forma, uma formulação estabilizada de elementos finitos é usada. Toda a implementação numérica é feita usando Python e FEniCS, uma biblioteca de elementos finitos. Relações constitutivas de fluido Newtoniano e uma estrutura de parede fina são consideradas. Uma comparação é feita com a teoria de escoamento sanguíneo de Poiseuille e também com suposição de parede fixa. Os impactos de escolha da suposição de parede fixa e do modelo deformável são avaliados através de parâmetros hemodinâmicos, como picos de pressão durante a sístole e diástole e a velocidade de propagação de ondas do escoamento sanguíneo. Finalmente, o CMM-FSI é usado para realizar uma simulação em um modelo idealizado da artéria carótida comum com estenose. Os resultados obtidos neste trabalho estão condizentes com a literatura.The study and simulation of blood flow in the cardiovascular system (CS) have many applications such as pathologies studies, surgical planning, and design of medical devices. The blood flow in the CS can be considered as a fluid dynamics problem, and in the optimal case, a coupling between fluid and solid dynamics, named Fluid-Structure Interaction (FSI) problems. Firstly, this work focuses on solving different fluid dynamics problems using usual stabilizations for the Galerkin method in order to solve the Navier-Stokes equation. A comparison using CPU time and error for different levels of mesh refinement is made as a way to evaluate and explore the FEniCS library and the function of each stabilization term. This method may be used to perform blood flow simulations using a rigid wall domain assumption. However, some authors say that blood velocity and pressure in large arteries are greatly influenced by vessel wall dynamics. By this reason, in the second part of this work, it was used the Coupled Momentum Method of Fluid-Structure Interaction (CMM-FSI,) to solve blood flow problems in large arteries. The CMM-FSI simplifies the fluid-structure coupling process when using a finite element formulation due to be based on a strong coupling of degrees-of-freedom of the fluid and the solid domains. It could be made by coupling the vessel wall deformation at the variational level as a boundary condition for the fluid domain and by keeping the same description of motion (Eulerian) in both domains, and with a fixed mesh. One of the positive parts of CMM-FSI is that it demands a lot less computational effort, mainly for 3D models, than usual arbitrary Lagrangian-Eulerian methods. On the other hand, this method claims that the polynomial approximation of the pressure and velocity elements must be the same order. Thus, a stabilized finite element formulation is used. All numerical implementation is done using Python and FEniCS, a finite element library. Constitutive relationships of Newtonian fluid and thin-walled structure are considered. A comparison is made with Poiseuille’s blood flow theory and also with a rigid wall assumption. The impacts of choosing a rigid wall assumption or a deformable model are evaluated with hemodynamics parameters, as pressure peaks in diastole and systole and blood flow wave velocities. Finally, the CMM-FSI is used to perform a blood flow simulation in an idealized common carotid with stenosis. The results obtained in this work are consistent with the literature.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Juiz de Fora (UFJF)Programa de Pós-graduação em Modelagem ComputacionalUFJFBrasilICE – Instituto de Ciências ExatasAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRAEscoamento sanguíneoVasos sanguíneos deformáveisInteração fluido- estruturaMétodo dos elementos finitosFEniCSBlood flowDeformable vesselsFluid-structure interactionFinite element methodFEniCSNumerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methodsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFORIGINALevandrodiasgaio.pdfevandrodiasgaio.pdfapplication/pdf3491882https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/1/evandrodiasgaio.pdf5ae7d9bd73fde44a7bc9fcd9bc699707MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTevandrodiasgaio.pdf.txtevandrodiasgaio.pdf.txtExtracted texttext/plain110073https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/4/evandrodiasgaio.pdf.txtcb9f0354fa75bd629172a21af2d50b2eMD54THUMBNAILevandrodiasgaio.pdf.jpgevandrodiasgaio.pdf.jpgGenerated Thumbnailimage/jpeg1140https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/5/evandrodiasgaio.pdf.jpg7616845ce66aec2e9b3674316600018fMD55ufjf/114802019-12-20 04:06:42.108oai:hermes.cpd.ufjf.br:ufjf/11480Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2019-12-20T06:06:42Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false
dc.title.pt_BR.fl_str_mv Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods
title Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods
spellingShingle Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods
Gaio, Evandro Dias
CNPQ::CIENCIAS EXATAS E DA TERRA
Escoamento sanguíneo
Vasos sanguíneos deformáveis
Interação fluido- estrutura
Método dos elementos finitos
FEniCS
Blood flow
Deformable vessels
Fluid-structure interaction
Finite element method
FEniCS
title_short Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods
title_full Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods
title_fullStr Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods
title_full_unstemmed Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods
title_sort Numerical simulations for blood flow problems using fluid-structure interaction with stabilized finite element methods
author Gaio, Evandro Dias
author_facet Gaio, Evandro Dias
author_role author
dc.contributor.advisor1.fl_str_mv Queiroz, Rafael Alves Bonfim de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8602778120667424
dc.contributor.advisor-co1.fl_str_mv Camata, José Jerônimo
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/7065024769982205
dc.contributor.referee1.fl_str_mv Elias, Renato Nascimento
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0320983700665674
dc.contributor.referee2.fl_str_mv Igreja, Iury Higor Aguiar da
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6654924341615471
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3169136706894483
dc.contributor.author.fl_str_mv Gaio, Evandro Dias
contributor_str_mv Queiroz, Rafael Alves Bonfim de
Camata, José Jerônimo
Elias, Renato Nascimento
Igreja, Iury Higor Aguiar da
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Escoamento sanguíneo
Vasos sanguíneos deformáveis
Interação fluido- estrutura
Método dos elementos finitos
FEniCS
Blood flow
Deformable vessels
Fluid-structure interaction
Finite element method
FEniCS
dc.subject.por.fl_str_mv Escoamento sanguíneo
Vasos sanguíneos deformáveis
Interação fluido- estrutura
Método dos elementos finitos
FEniCS
Blood flow
Deformable vessels
Fluid-structure interaction
Finite element method
FEniCS
description O estudo e simulação de escoamentos sanguíneos no sistema cardiovascular (CS - Cardiovascular System) tem muitas aplicações, como estudos de patologias, planejamento de cirurgias e projeto de dispositivos médicos. O escoamento sanguíneo no CS pode ser considerado um problema de dinâmica dos fluidos, e no caso ótimo, um problema acoplado entre dinâmicas dos sólidos e dos fluidos, chamado de problema de interação fluido-estrutura (FSI - Fluid-Structure Interaction). Esse trabalho primeiro foca na solução de diferentes problemas de dinâmica dos fluidos, usando diferentes estabilizações numéricas para a solução da equação de Navier-Stokes através do método de Galerkin. Uma comparação usando tempo de CPU e erros para diferentes níveis de refinamento da malha é feita, como forma de avaliar e explorar a plataforma FEniCS e a função dos termos estabilizadores. Esse método pode ser usado na simulação de escoamento sanguíneo que considera um domínio de parede rígida. Entretanto, alguns autores dizem que a velocidade de escoamento e pressão sanguínea são fortemente influenciadas pela dinâmica das paredes. Por essa razão, na segunda parte deste trabalho, foi utilizado o método de momento acoplado (CMM-FSI - Coupled Momentum Method for FSI ) para resolver problemas de escoamento sanguíneo em artérias grandes e deformáveis. O CMM-FSI simplifica o processo de acoplamento fluido-estrutura quando utilizando o método dos elementos finitos devido a ser baseado em um acoplamento forte dos graus de liberdade nos domínios do fluido e do sólido. Isso pode ser feito acoplando a deformação da parede do vaso no nível variacional, como uma condição de contorno para o domínio do fluido e também mantendo a descrição de movimento (Euleriana) para uma malha fixa. A parte positiva do CMM-FSI é que demanda um esforço computacional muito menor, principalmente para modelos 3D, do que métodos Eulerianos-Lagrangiano arbitrários convencionais. Por outro lado, esse método pede que a ordem de aproximação polinomial dos elementos para pressão e velocidade sejam da mesma ordem. Dessa forma, uma formulação estabilizada de elementos finitos é usada. Toda a implementação numérica é feita usando Python e FEniCS, uma biblioteca de elementos finitos. Relações constitutivas de fluido Newtoniano e uma estrutura de parede fina são consideradas. Uma comparação é feita com a teoria de escoamento sanguíneo de Poiseuille e também com suposição de parede fixa. Os impactos de escolha da suposição de parede fixa e do modelo deformável são avaliados através de parâmetros hemodinâmicos, como picos de pressão durante a sístole e diástole e a velocidade de propagação de ondas do escoamento sanguíneo. Finalmente, o CMM-FSI é usado para realizar uma simulação em um modelo idealizado da artéria carótida comum com estenose. Os resultados obtidos neste trabalho estão condizentes com a literatura.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-12-19T16:17:31Z
dc.date.available.fl_str_mv 2019-12-18
2019-12-19T16:17:31Z
dc.date.issued.fl_str_mv 2019-09-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufjf.br/jspui/handle/ufjf/11480
url https://repositorio.ufjf.br/jspui/handle/ufjf/11480
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv UFJF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICE – Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Juiz de Fora (UFJF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFJF
instname:Universidade Federal de Juiz de Fora (UFJF)
instacron:UFJF
instname_str Universidade Federal de Juiz de Fora (UFJF)
instacron_str UFJF
institution UFJF
reponame_str Repositório Institucional da UFJF
collection Repositório Institucional da UFJF
bitstream.url.fl_str_mv https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/1/evandrodiasgaio.pdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/2/license_rdf
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/3/license.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/4/evandrodiasgaio.pdf.txt
https://repositorio.ufjf.br/jspui/bitstream/ufjf/11480/5/evandrodiasgaio.pdf.jpg
bitstream.checksum.fl_str_mv 5ae7d9bd73fde44a7bc9fcd9bc699707
e39d27027a6cc9cb039ad269a5db8e34
8a4605be74aa9ea9d79846c1fba20a33
cb9f0354fa75bd629172a21af2d50b2e
7616845ce66aec2e9b3674316600018f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)
repository.mail.fl_str_mv
_version_ 1813193953903640576