Optimization of edible coating with essential oils in blueberries
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Ciência e Agrotecnologia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542022000100401 |
Resumo: | ABSTRACT The application of edible coatings containing natural antimicrobials is a postharvest conservation technology in fruits that have generated interest. This research aimed the determination of the edible coating composition and the concentration of essential oil that allows optimizing the physical-mechanical characteristics for its application in the conservation of blueberries. The antimicrobial activity of the essential oils of cinnamon and lemon was determined, resulting in a minimum inhibitory concentration of 0.3% in both cases. After applying the Box Behnken design of the Response Surface Methodology (RSM), the optimal treatment for edible coating with cinnamon essential oil 0.3% was determined: aloe vera gel 18.40%, gelatin 2%, and glycerol 0.055% obtaining values of 27.95% solubility, 0.90 mm of deformation and 3.34 N of breaking strength. Likewise, the same procedure was followed for the coating with lemon essential oil 0.3%, determining as optimal 23.94% aloe vera gel, 2% gelatin, and 0.05% glycerol, getting values of 28.06% solubility, 0.45 mm deformation, and 4.53 N of breaking strength. Finally, their applications in Biloxi blueberries were validated, preserving the main physicochemical and microbiological quality attributes during 28 days of storage at 2 °C, compared, to a control sample. |
id |
UFLA-2_9be035a8d57c8a4a6613ae263339ffb2 |
---|---|
oai_identifier_str |
oai:scielo:S1413-70542022000100401 |
network_acronym_str |
UFLA-2 |
network_name_str |
Ciência e Agrotecnologia (Online) |
repository_id_str |
|
spelling |
Optimization of edible coating with essential oils in blueberriesMinimal processedpostharvestberriesABSTRACT The application of edible coatings containing natural antimicrobials is a postharvest conservation technology in fruits that have generated interest. This research aimed the determination of the edible coating composition and the concentration of essential oil that allows optimizing the physical-mechanical characteristics for its application in the conservation of blueberries. The antimicrobial activity of the essential oils of cinnamon and lemon was determined, resulting in a minimum inhibitory concentration of 0.3% in both cases. After applying the Box Behnken design of the Response Surface Methodology (RSM), the optimal treatment for edible coating with cinnamon essential oil 0.3% was determined: aloe vera gel 18.40%, gelatin 2%, and glycerol 0.055% obtaining values of 27.95% solubility, 0.90 mm of deformation and 3.34 N of breaking strength. Likewise, the same procedure was followed for the coating with lemon essential oil 0.3%, determining as optimal 23.94% aloe vera gel, 2% gelatin, and 0.05% glycerol, getting values of 28.06% solubility, 0.45 mm deformation, and 4.53 N of breaking strength. Finally, their applications in Biloxi blueberries were validated, preserving the main physicochemical and microbiological quality attributes during 28 days of storage at 2 °C, compared, to a control sample.Editora da UFLA2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542022000100401Ciência e Agrotecnologia v.46 2022reponame:Ciência e Agrotecnologia (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLA10.1590/1413-7054202246006022info:eu-repo/semantics/openAccessMárquez-Villacorta,LuisPretell-Vásquez,CarlaHayayumi-Valdivia,Maríaeng2022-09-20T00:00:00Zoai:scielo:S1413-70542022000100401Revistahttp://www.scielo.br/cagroPUBhttps://old.scielo.br/oai/scielo-oai.php||renpaiva@dbi.ufla.br|| editora@editora.ufla.br1981-18291413-7054opendoar:2022-11-22T16:31:49.080466Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Optimization of edible coating with essential oils in blueberries |
title |
Optimization of edible coating with essential oils in blueberries |
spellingShingle |
Optimization of edible coating with essential oils in blueberries Márquez-Villacorta,Luis Minimal processed postharvest berries |
title_short |
Optimization of edible coating with essential oils in blueberries |
title_full |
Optimization of edible coating with essential oils in blueberries |
title_fullStr |
Optimization of edible coating with essential oils in blueberries |
title_full_unstemmed |
Optimization of edible coating with essential oils in blueberries |
title_sort |
Optimization of edible coating with essential oils in blueberries |
author |
Márquez-Villacorta,Luis |
author_facet |
Márquez-Villacorta,Luis Pretell-Vásquez,Carla Hayayumi-Valdivia,María |
author_role |
author |
author2 |
Pretell-Vásquez,Carla Hayayumi-Valdivia,María |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Márquez-Villacorta,Luis Pretell-Vásquez,Carla Hayayumi-Valdivia,María |
dc.subject.por.fl_str_mv |
Minimal processed postharvest berries |
topic |
Minimal processed postharvest berries |
description |
ABSTRACT The application of edible coatings containing natural antimicrobials is a postharvest conservation technology in fruits that have generated interest. This research aimed the determination of the edible coating composition and the concentration of essential oil that allows optimizing the physical-mechanical characteristics for its application in the conservation of blueberries. The antimicrobial activity of the essential oils of cinnamon and lemon was determined, resulting in a minimum inhibitory concentration of 0.3% in both cases. After applying the Box Behnken design of the Response Surface Methodology (RSM), the optimal treatment for edible coating with cinnamon essential oil 0.3% was determined: aloe vera gel 18.40%, gelatin 2%, and glycerol 0.055% obtaining values of 27.95% solubility, 0.90 mm of deformation and 3.34 N of breaking strength. Likewise, the same procedure was followed for the coating with lemon essential oil 0.3%, determining as optimal 23.94% aloe vera gel, 2% gelatin, and 0.05% glycerol, getting values of 28.06% solubility, 0.45 mm deformation, and 4.53 N of breaking strength. Finally, their applications in Biloxi blueberries were validated, preserving the main physicochemical and microbiological quality attributes during 28 days of storage at 2 °C, compared, to a control sample. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542022000100401 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542022000100401 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1413-7054202246006022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Editora da UFLA |
publisher.none.fl_str_mv |
Editora da UFLA |
dc.source.none.fl_str_mv |
Ciência e Agrotecnologia v.46 2022 reponame:Ciência e Agrotecnologia (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Ciência e Agrotecnologia (Online) |
collection |
Ciência e Agrotecnologia (Online) |
repository.name.fl_str_mv |
Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
||renpaiva@dbi.ufla.br|| editora@editora.ufla.br |
_version_ |
1799874971690860544 |