Sisvar: a Guide for its Bootstrap procedures in multiple comparisons

Detalhes bibliográficos
Autor(a) principal: Ferreira,Daniel Furtado
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Ciência e Agrotecnologia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542014000200001
Resumo: Sisvar is a statistical analysis system with a large usage by the scientific community to produce statistical analyses and to produce scientific results and conclusions. The large use of the statistical procedures of Sisvar by the scientific community is due to it being accurate, precise, simple and robust. With many options of analysis, Sisvar has a not so largely used analysis that is the multiple comparison procedures using bootstrap approaches. This paper aims to review this subject and to show some advantages of using Sisvar to perform such analysis to compare treatments means. Tests like Dunnett, Tukey, Student-Newman-Keuls and Scott-Knott are performed alternatively by bootstrap methods and show greater power and better controls of experimentwise type I error rates under non-normal, asymmetric, platykurtic or leptokurtic distributions.
id UFLA-2_a159d4f08c1f31948959e7b9b2a80759
oai_identifier_str oai:scielo:S1413-70542014000200001
network_acronym_str UFLA-2
network_name_str Ciência e Agrotecnologia (Online)
repository_id_str
spelling Sisvar: a Guide for its Bootstrap procedures in multiple comparisonsMonte Carlotype I errorpowerSisvar is a statistical analysis system with a large usage by the scientific community to produce statistical analyses and to produce scientific results and conclusions. The large use of the statistical procedures of Sisvar by the scientific community is due to it being accurate, precise, simple and robust. With many options of analysis, Sisvar has a not so largely used analysis that is the multiple comparison procedures using bootstrap approaches. This paper aims to review this subject and to show some advantages of using Sisvar to perform such analysis to compare treatments means. Tests like Dunnett, Tukey, Student-Newman-Keuls and Scott-Knott are performed alternatively by bootstrap methods and show greater power and better controls of experimentwise type I error rates under non-normal, asymmetric, platykurtic or leptokurtic distributions.Editora da UFLA2014-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542014000200001Ciência e Agrotecnologia v.38 n.2 2014reponame:Ciência e Agrotecnologia (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLA10.1590/S1413-70542014000200001info:eu-repo/semantics/openAccessFerreira,Daniel Furtadoeng2014-05-30T00:00:00Zoai:scielo:S1413-70542014000200001Revistahttp://www.scielo.br/cagroPUBhttps://old.scielo.br/oai/scielo-oai.php||renpaiva@dbi.ufla.br|| editora@editora.ufla.br1981-18291413-7054opendoar:2022-11-22T16:31:19.413109Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA)true
dc.title.none.fl_str_mv Sisvar: a Guide for its Bootstrap procedures in multiple comparisons
title Sisvar: a Guide for its Bootstrap procedures in multiple comparisons
spellingShingle Sisvar: a Guide for its Bootstrap procedures in multiple comparisons
Ferreira,Daniel Furtado
Monte Carlo
type I error
power
title_short Sisvar: a Guide for its Bootstrap procedures in multiple comparisons
title_full Sisvar: a Guide for its Bootstrap procedures in multiple comparisons
title_fullStr Sisvar: a Guide for its Bootstrap procedures in multiple comparisons
title_full_unstemmed Sisvar: a Guide for its Bootstrap procedures in multiple comparisons
title_sort Sisvar: a Guide for its Bootstrap procedures in multiple comparisons
author Ferreira,Daniel Furtado
author_facet Ferreira,Daniel Furtado
author_role author
dc.contributor.author.fl_str_mv Ferreira,Daniel Furtado
dc.subject.por.fl_str_mv Monte Carlo
type I error
power
topic Monte Carlo
type I error
power
description Sisvar is a statistical analysis system with a large usage by the scientific community to produce statistical analyses and to produce scientific results and conclusions. The large use of the statistical procedures of Sisvar by the scientific community is due to it being accurate, precise, simple and robust. With many options of analysis, Sisvar has a not so largely used analysis that is the multiple comparison procedures using bootstrap approaches. This paper aims to review this subject and to show some advantages of using Sisvar to perform such analysis to compare treatments means. Tests like Dunnett, Tukey, Student-Newman-Keuls and Scott-Knott are performed alternatively by bootstrap methods and show greater power and better controls of experimentwise type I error rates under non-normal, asymmetric, platykurtic or leptokurtic distributions.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542014000200001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542014000200001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1413-70542014000200001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Editora da UFLA
publisher.none.fl_str_mv Editora da UFLA
dc.source.none.fl_str_mv Ciência e Agrotecnologia v.38 n.2 2014
reponame:Ciência e Agrotecnologia (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Ciência e Agrotecnologia (Online)
collection Ciência e Agrotecnologia (Online)
repository.name.fl_str_mv Ciência e Agrotecnologia (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv ||renpaiva@dbi.ufla.br|| editora@editora.ufla.br
_version_ 1799874969267601408