Prediction of genetic gains by mixed models in conilon coffee progenies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Coffee Science (Online) |
Texto Completo: | https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961 |
Resumo: | The objective of this study was to evaluate the genetic gains predicted through different selection indices by REML / BLUP methodology in five traits of interest to the breeding program of conilon coffee Incaper. Eight half-sib progenies of early maturing cycle were evaluated regarding to average of two harvests with three replications, totaling 1368 observations. Indices of classic selection, multiplicative and based on the sum of the ranks, were used. During harvest, it were evaluated the characteristics: grain size (GS), productivity (PRO), size (S), vegetative vigor (VIG) and degree of slope (GI). The population was evaluated at the Experimental Farm of Marilândia, in Northwest region of Espírito Santo. The genetic-statistical analyzes were performed by Selegen program - REM / BLUP. It was verified by the analysis of genetic parameters, an excellent selective potential among families for all evaluated characteristics. The Mulamba and Mock index showed greater efficiency for the selection of half-sib families of conilon coffee. |
id |
UFLA-4_c77d9616d8f3f7793ec525608d6a8791 |
---|---|
oai_identifier_str |
oai:coffeescience.ufla.br:article/961 |
network_acronym_str |
UFLA-4 |
network_name_str |
Coffee Science (Online) |
repository_id_str |
|
spelling |
Prediction of genetic gains by mixed models in conilon coffee progeniesPredição de ganhos genéticos via modelos mistos em Progênies de café conilonPredicted genotypic valuesCoffea canephoramixed linear modelsValores genotípicos preditosCoffea canephoramodelos lineares mistosThe objective of this study was to evaluate the genetic gains predicted through different selection indices by REML / BLUP methodology in five traits of interest to the breeding program of conilon coffee Incaper. Eight half-sib progenies of early maturing cycle were evaluated regarding to average of two harvests with three replications, totaling 1368 observations. Indices of classic selection, multiplicative and based on the sum of the ranks, were used. During harvest, it were evaluated the characteristics: grain size (GS), productivity (PRO), size (S), vegetative vigor (VIG) and degree of slope (GI). The population was evaluated at the Experimental Farm of Marilândia, in Northwest region of Espírito Santo. The genetic-statistical analyzes were performed by Selegen program - REM / BLUP. It was verified by the analysis of genetic parameters, an excellent selective potential among families for all evaluated characteristics. The Mulamba and Mock index showed greater efficiency for the selection of half-sib families of conilon coffee.Objetivou-se, neste trabalho, avaliar os ganhos genéticos preditos por meio de diferentes índices de seleção pela metodologia REML/BLUP, em cinco caracteres de interesse ao programa de melhoramento do café conilon do Incaper. Foram avaliadas 8 progênies de meios-irmãos, de ciclo de maturação precoce, média de duas safras, com três repetições, o que totalizou 1368 observações, utilizados os índices de seleção clássico, multiplicativo e com base na soma de postos. Avaliaram-se, na época de colheita, as características tamanho dos grãos (TG), produtividade (PRO), porte (PT), vigor vegetativo (VIG) e grau de inclinação (GI). A população foi avaliada na Fazenda Experimental de Marilândia, região Noroeste do estado do Espírito Santo. As análises genético-estatísticas foram realizadas pelo programa Selegen - REM/BLUP. Verificou-se, a partir da análise dos parâmetros genéticos, um excelente potencial seletivo entre famílias, para todas as características avaliadas. O índice Mulamba e Mock foi o que mostrou maior eficiência de seleção entre famílias de meios-irmãos de café conilon.Editora UFLA2016-03-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/zipapplication/zipapplication/ziphttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/961Coffee Science - ISSN 1984-3909; Vol. 11 No. 1 (2016); 39 - 45Coffee Science; Vol. 11 Núm. 1 (2016); 39 - 45Coffee Science; v. 11 n. 1 (2016); 39 - 451984-3909reponame:Coffee Science (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://coffeescience.ufla.br/index.php/Coffeescience/article/view/961/pdf_5https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961/1491https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961/1492https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961/1493Copyright (c) 2016 Coffee Science - ISSN 1984-3909https://creativecommons.org/info:eu-repo/semantics/openAccessCarias, Cíntia Machado de Oliveira MoulinGravina, Geraldo AmaralFerrão, Maria Amélia Gavada Fonseca, Aymbiré Francisco AlmeidaFerrão, Romário GavaVivas, MarceloViana, Alexandre Pio2016-03-23T02:36:31Zoai:coffeescience.ufla.br:article/961Revistahttps://coffeescience.ufla.br/index.php/CoffeesciencePUBhttps://coffeescience.ufla.br/index.php/Coffeescience/oaicoffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com1984-39091809-6875opendoar:2024-05-21T19:53:54.069779Coffee Science (Online) - Universidade Federal de Lavras (UFLA)true |
dc.title.none.fl_str_mv |
Prediction of genetic gains by mixed models in conilon coffee progenies Predição de ganhos genéticos via modelos mistos em Progênies de café conilon |
title |
Prediction of genetic gains by mixed models in conilon coffee progenies |
spellingShingle |
Prediction of genetic gains by mixed models in conilon coffee progenies Carias, Cíntia Machado de Oliveira Moulin Predicted genotypic values Coffea canephora mixed linear models Valores genotípicos preditos Coffea canephora modelos lineares mistos |
title_short |
Prediction of genetic gains by mixed models in conilon coffee progenies |
title_full |
Prediction of genetic gains by mixed models in conilon coffee progenies |
title_fullStr |
Prediction of genetic gains by mixed models in conilon coffee progenies |
title_full_unstemmed |
Prediction of genetic gains by mixed models in conilon coffee progenies |
title_sort |
Prediction of genetic gains by mixed models in conilon coffee progenies |
author |
Carias, Cíntia Machado de Oliveira Moulin |
author_facet |
Carias, Cíntia Machado de Oliveira Moulin Gravina, Geraldo Amaral Ferrão, Maria Amélia Gava da Fonseca, Aymbiré Francisco Almeida Ferrão, Romário Gava Vivas, Marcelo Viana, Alexandre Pio |
author_role |
author |
author2 |
Gravina, Geraldo Amaral Ferrão, Maria Amélia Gava da Fonseca, Aymbiré Francisco Almeida Ferrão, Romário Gava Vivas, Marcelo Viana, Alexandre Pio |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Carias, Cíntia Machado de Oliveira Moulin Gravina, Geraldo Amaral Ferrão, Maria Amélia Gava da Fonseca, Aymbiré Francisco Almeida Ferrão, Romário Gava Vivas, Marcelo Viana, Alexandre Pio |
dc.subject.por.fl_str_mv |
Predicted genotypic values Coffea canephora mixed linear models Valores genotípicos preditos Coffea canephora modelos lineares mistos |
topic |
Predicted genotypic values Coffea canephora mixed linear models Valores genotípicos preditos Coffea canephora modelos lineares mistos |
description |
The objective of this study was to evaluate the genetic gains predicted through different selection indices by REML / BLUP methodology in five traits of interest to the breeding program of conilon coffee Incaper. Eight half-sib progenies of early maturing cycle were evaluated regarding to average of two harvests with three replications, totaling 1368 observations. Indices of classic selection, multiplicative and based on the sum of the ranks, were used. During harvest, it were evaluated the characteristics: grain size (GS), productivity (PRO), size (S), vegetative vigor (VIG) and degree of slope (GI). The population was evaluated at the Experimental Farm of Marilândia, in Northwest region of Espírito Santo. The genetic-statistical analyzes were performed by Selegen program - REM / BLUP. It was verified by the analysis of genetic parameters, an excellent selective potential among families for all evaluated characteristics. The Mulamba and Mock index showed greater efficiency for the selection of half-sib families of conilon coffee. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961 |
url |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961/pdf_5 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961/1491 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961/1492 https://coffeescience.ufla.br/index.php/Coffeescience/article/view/961/1493 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 Coffee Science - ISSN 1984-3909 https://creativecommons.org/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/zip application/zip application/zip |
dc.publisher.none.fl_str_mv |
Editora UFLA |
publisher.none.fl_str_mv |
Editora UFLA |
dc.source.none.fl_str_mv |
Coffee Science - ISSN 1984-3909; Vol. 11 No. 1 (2016); 39 - 45 Coffee Science; Vol. 11 Núm. 1 (2016); 39 - 45 Coffee Science; v. 11 n. 1 (2016); 39 - 45 1984-3909 reponame:Coffee Science (Online) instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Coffee Science (Online) |
collection |
Coffee Science (Online) |
repository.name.fl_str_mv |
Coffee Science (Online) - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
coffeescience@dag.ufla.br||coffeescience@dag.ufla.br|| alvaro-cozadi@hotmail.com |
_version_ |
1799874920397668352 |