Validation of stepwise-based procedure in GAMLSS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/50655 |
Resumo: | One of the key features in regression models consists in selecting appropriate characteristics that explain the behavior of the response variable, in which stepwise-based procedures occupy a prominent position. In this paper we performed several simulation studies to investigate whether a specific stepwise-based approach, namely Strategy A, properly selects authentic variables into the generalized additive models for location, scale and shape framework, considering Gaussian, zero inflated Poisson and Weibull distributions. Continuous (with linear and nonlinear relationships) and categorical explanatory variables are considered and they are selected through some goodness-of-fit statistics. Overall, we conclude that the Strategy A greatly performed. |
id |
UFLA_a2bb5d488303acd8ba38442a1455431a |
---|---|
oai_identifier_str |
oai:localhost:1/50655 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Validation of stepwise-based procedure in GAMLSSRegression modelsStepwise-based approachModel selectionSmoothingModelos de regressãoAbordagem passo a passoSeleção de modeloSuavizaçãoOne of the key features in regression models consists in selecting appropriate characteristics that explain the behavior of the response variable, in which stepwise-based procedures occupy a prominent position. In this paper we performed several simulation studies to investigate whether a specific stepwise-based approach, namely Strategy A, properly selects authentic variables into the generalized additive models for location, scale and shape framework, considering Gaussian, zero inflated Poisson and Weibull distributions. Continuous (with linear and nonlinear relationships) and categorical explanatory variables are considered and they are selected through some goodness-of-fit statistics. Overall, we conclude that the Strategy A greatly performed.PubliMill2022-07-19T22:37:37Z2022-07-19T22:37:37Z2021-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfRAMIRES, T. G. et al. Validation of stepwise-based procedure in GAMLSS. Journal of Data Science, [S. l.], v. 19, n. 1, p. 96-110, Jan. 2021. DOI: 10.6339/21-JDS1003.http://repositorio.ufla.br/jspui/handle/1/50655Journal of Data Sciencereponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessRamires, Thiago G.Nakamura, Luiz R.Righetto, Ana J.Pescim, Rodrigo R.Mazucheli, JosmarRigby, Robert A.eng2023-05-19T18:52:13Zoai:localhost:1/50655Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-19T18:52:13Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Validation of stepwise-based procedure in GAMLSS |
title |
Validation of stepwise-based procedure in GAMLSS |
spellingShingle |
Validation of stepwise-based procedure in GAMLSS Ramires, Thiago G. Regression models Stepwise-based approach Model selection Smoothing Modelos de regressão Abordagem passo a passo Seleção de modelo Suavização |
title_short |
Validation of stepwise-based procedure in GAMLSS |
title_full |
Validation of stepwise-based procedure in GAMLSS |
title_fullStr |
Validation of stepwise-based procedure in GAMLSS |
title_full_unstemmed |
Validation of stepwise-based procedure in GAMLSS |
title_sort |
Validation of stepwise-based procedure in GAMLSS |
author |
Ramires, Thiago G. |
author_facet |
Ramires, Thiago G. Nakamura, Luiz R. Righetto, Ana J. Pescim, Rodrigo R. Mazucheli, Josmar Rigby, Robert A. |
author_role |
author |
author2 |
Nakamura, Luiz R. Righetto, Ana J. Pescim, Rodrigo R. Mazucheli, Josmar Rigby, Robert A. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Ramires, Thiago G. Nakamura, Luiz R. Righetto, Ana J. Pescim, Rodrigo R. Mazucheli, Josmar Rigby, Robert A. |
dc.subject.por.fl_str_mv |
Regression models Stepwise-based approach Model selection Smoothing Modelos de regressão Abordagem passo a passo Seleção de modelo Suavização |
topic |
Regression models Stepwise-based approach Model selection Smoothing Modelos de regressão Abordagem passo a passo Seleção de modelo Suavização |
description |
One of the key features in regression models consists in selecting appropriate characteristics that explain the behavior of the response variable, in which stepwise-based procedures occupy a prominent position. In this paper we performed several simulation studies to investigate whether a specific stepwise-based approach, namely Strategy A, properly selects authentic variables into the generalized additive models for location, scale and shape framework, considering Gaussian, zero inflated Poisson and Weibull distributions. Continuous (with linear and nonlinear relationships) and categorical explanatory variables are considered and they are selected through some goodness-of-fit statistics. Overall, we conclude that the Strategy A greatly performed. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01 2022-07-19T22:37:37Z 2022-07-19T22:37:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
RAMIRES, T. G. et al. Validation of stepwise-based procedure in GAMLSS. Journal of Data Science, [S. l.], v. 19, n. 1, p. 96-110, Jan. 2021. DOI: 10.6339/21-JDS1003. http://repositorio.ufla.br/jspui/handle/1/50655 |
identifier_str_mv |
RAMIRES, T. G. et al. Validation of stepwise-based procedure in GAMLSS. Journal of Data Science, [S. l.], v. 19, n. 1, p. 96-110, Jan. 2021. DOI: 10.6339/21-JDS1003. |
url |
http://repositorio.ufla.br/jspui/handle/1/50655 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
PubliMill |
publisher.none.fl_str_mv |
PubliMill |
dc.source.none.fl_str_mv |
Journal of Data Science reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439177443966976 |