Redes neuronales artificiales para la predicción de la masa corporal de pollos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | spa |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/40313 |
Resumo: | The thermal environment inside a broiler house has a great influence on animal welfare and productivity during the production phase. Thus, the aim of this study was to predict body mass of chicks from 2 to 21 days of age when subjected to different intensities (27, 30, 33 and 36°C) and duration (1, 2, 3 and 4 days starting on the second day of life) using artificial neural networks (ANN). This experiment was conducted at Lavras, MG, Brazil. It was used 210 chicks of both sexes, from 1st to 22nd days of life. The chicks were raised inside four climate-controlled wind tunnels. Daily the weight of all the chicks was measured to know the daily body masses. The input variables were dry-bulb air temperature, duration of thermal stress, chick age, and the output variable was the daily body mass of chicks. A database containing 840 records was used to train (70% of data), validate (15%) and test (15%) of models based on artificial neural networks (ANN). Between these models, the ANN was accurate in predicting the BM of chicks from 2 to 21 days of age after they were subjected to the input variables, and it had an R² of 0.9992 and a standard error of 5,23 g. This model enables the simulation of different scenarios that can assist in managerial decision-making, and it can be embedded in the heating controls. |
id |
UFLA_a2d8c6205b2b7e67b2202614a5ec7de8 |
---|---|
oai_identifier_str |
oai:localhost:1/40313 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Redes neuronales artificiales para la predicción de la masa corporal de pollosAnimal welfareArtificial intelligenceBroiler - Thermal comfortBienestar animalInteligencia artificialPollos - Confort térmicoBem-estar animalFrango - Conforto térmicoThe thermal environment inside a broiler house has a great influence on animal welfare and productivity during the production phase. Thus, the aim of this study was to predict body mass of chicks from 2 to 21 days of age when subjected to different intensities (27, 30, 33 and 36°C) and duration (1, 2, 3 and 4 days starting on the second day of life) using artificial neural networks (ANN). This experiment was conducted at Lavras, MG, Brazil. It was used 210 chicks of both sexes, from 1st to 22nd days of life. The chicks were raised inside four climate-controlled wind tunnels. Daily the weight of all the chicks was measured to know the daily body masses. The input variables were dry-bulb air temperature, duration of thermal stress, chick age, and the output variable was the daily body mass of chicks. A database containing 840 records was used to train (70% of data), validate (15%) and test (15%) of models based on artificial neural networks (ANN). Between these models, the ANN was accurate in predicting the BM of chicks from 2 to 21 days of age after they were subjected to the input variables, and it had an R² of 0.9992 and a standard error of 5,23 g. This model enables the simulation of different scenarios that can assist in managerial decision-making, and it can be embedded in the heating controls.Dentro de un galpón avícola el ambiente térmico ejerce una gran influencia en el bienestar y la productividad de los animales. De esta manera, el propósito de este trabajo fue predecir la masa corporal de polluelos de 2 a 21 días de vida, sujetos a condiciones de confort y estrés calórico en diferentes intensidades (27; 30; 33 y 36 °C) y períodos de duración (1; 2; 3 y 4 días a partir del 2o día de vida) a través de redes neuronales artificiales (RNA). El experimento se llevó a cabo en Lavras, MG, Brasil. 210 pollitos de ambos sexos se utilizaron del 1 al 22 día de vida alojados en cuatro túneles de viento climatizados. Todos los días, todos los polluelos fueron pesados para acompañar su masa corporal. Las variables de entrada fueron: temperatura de bulbo seco del aire, duración del estrés térmico, edad de las aves y como variable de salida, la masa corporal diaria de los pollitos. Se obtuvo una base de datos de 840 observaciones, siendo 70% utilizado para el entrenamiento de la red, un 15% para la validación y un 15% para pruebas de modelos basados en RNA. Se demostró que las RNAs eran precisas para predecir la masa corporal de los pollitos sometidos a diferentes intensidades y duraciones de condiciones térmicas presentando un R2 de 0,9992 y error estándar de 5,23 G. Además, las RNAs propiciaron la simulación de varios escenarios, que pueden ayudar en la toma de decisiones con relación a la gestión, y pueden ser incorporados a los sistemas de control de calefacción.Editorial Tecnológica de Costa Rica.2020-04-24T13:10:43Z2020-04-24T13:10:43Z2019-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFERRAZ, P. F. P et al. Redes neuronales artificiales para la predicción de la masa corporal de pollos. Tecnología en Marcha, [S. l.], v. 32, n. 7, p. 93-99, Apr. 2019.http://repositorio.ufla.br/jspui/handle/1/40313Tecnología en Marchareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessFerraz, Patrícia Ferreira PoncianoYanagi Junior, TadayukiJulio, Yamid Fabián HernándezFerraz, Gabriel Araújo e SilvaCecchin, Daianespa2023-06-13T13:06:42Zoai:localhost:1/40313Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-06-13T13:06:42Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Redes neuronales artificiales para la predicción de la masa corporal de pollos |
title |
Redes neuronales artificiales para la predicción de la masa corporal de pollos |
spellingShingle |
Redes neuronales artificiales para la predicción de la masa corporal de pollos Ferraz, Patrícia Ferreira Ponciano Animal welfare Artificial intelligence Broiler - Thermal comfort Bienestar animal Inteligencia artificial Pollos - Confort térmico Bem-estar animal Frango - Conforto térmico |
title_short |
Redes neuronales artificiales para la predicción de la masa corporal de pollos |
title_full |
Redes neuronales artificiales para la predicción de la masa corporal de pollos |
title_fullStr |
Redes neuronales artificiales para la predicción de la masa corporal de pollos |
title_full_unstemmed |
Redes neuronales artificiales para la predicción de la masa corporal de pollos |
title_sort |
Redes neuronales artificiales para la predicción de la masa corporal de pollos |
author |
Ferraz, Patrícia Ferreira Ponciano |
author_facet |
Ferraz, Patrícia Ferreira Ponciano Yanagi Junior, Tadayuki Julio, Yamid Fabián Hernández Ferraz, Gabriel Araújo e Silva Cecchin, Daiane |
author_role |
author |
author2 |
Yanagi Junior, Tadayuki Julio, Yamid Fabián Hernández Ferraz, Gabriel Araújo e Silva Cecchin, Daiane |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ferraz, Patrícia Ferreira Ponciano Yanagi Junior, Tadayuki Julio, Yamid Fabián Hernández Ferraz, Gabriel Araújo e Silva Cecchin, Daiane |
dc.subject.por.fl_str_mv |
Animal welfare Artificial intelligence Broiler - Thermal comfort Bienestar animal Inteligencia artificial Pollos - Confort térmico Bem-estar animal Frango - Conforto térmico |
topic |
Animal welfare Artificial intelligence Broiler - Thermal comfort Bienestar animal Inteligencia artificial Pollos - Confort térmico Bem-estar animal Frango - Conforto térmico |
description |
The thermal environment inside a broiler house has a great influence on animal welfare and productivity during the production phase. Thus, the aim of this study was to predict body mass of chicks from 2 to 21 days of age when subjected to different intensities (27, 30, 33 and 36°C) and duration (1, 2, 3 and 4 days starting on the second day of life) using artificial neural networks (ANN). This experiment was conducted at Lavras, MG, Brazil. It was used 210 chicks of both sexes, from 1st to 22nd days of life. The chicks were raised inside four climate-controlled wind tunnels. Daily the weight of all the chicks was measured to know the daily body masses. The input variables were dry-bulb air temperature, duration of thermal stress, chick age, and the output variable was the daily body mass of chicks. A database containing 840 records was used to train (70% of data), validate (15%) and test (15%) of models based on artificial neural networks (ANN). Between these models, the ANN was accurate in predicting the BM of chicks from 2 to 21 days of age after they were subjected to the input variables, and it had an R² of 0.9992 and a standard error of 5,23 g. This model enables the simulation of different scenarios that can assist in managerial decision-making, and it can be embedded in the heating controls. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 2020-04-24T13:10:43Z 2020-04-24T13:10:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERRAZ, P. F. P et al. Redes neuronales artificiales para la predicción de la masa corporal de pollos. Tecnología en Marcha, [S. l.], v. 32, n. 7, p. 93-99, Apr. 2019. http://repositorio.ufla.br/jspui/handle/1/40313 |
identifier_str_mv |
FERRAZ, P. F. P et al. Redes neuronales artificiales para la predicción de la masa corporal de pollos. Tecnología en Marcha, [S. l.], v. 32, n. 7, p. 93-99, Apr. 2019. |
url |
http://repositorio.ufla.br/jspui/handle/1/40313 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editorial Tecnológica de Costa Rica. |
publisher.none.fl_str_mv |
Editorial Tecnológica de Costa Rica. |
dc.source.none.fl_str_mv |
Tecnología en Marcha reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439270316343296 |