Redes neuronales artificiales para la predicción de la masa corporal de pollos

Detalhes bibliográficos
Autor(a) principal: Ferraz, Patrícia Ferreira Ponciano
Data de Publicação: 2019
Outros Autores: Yanagi Junior, Tadayuki, Julio, Yamid Fabián Hernández, Ferraz, Gabriel Araújo e Silva, Cecchin, Daiane
Tipo de documento: Artigo
Idioma: spa
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/40313
Resumo: The thermal environment inside a broiler house has a great influence on animal welfare and productivity during the production phase. Thus, the aim of this study was to predict body mass of chicks from 2 to 21 days of age when subjected to different intensities (27, 30, 33 and 36°C) and duration (1, 2, 3 and 4 days starting on the second day of life) using artificial neural networks (ANN). This experiment was conducted at Lavras, MG, Brazil. It was used 210 chicks of both sexes, from 1st to 22nd days of life. The chicks were raised inside four climate-controlled wind tunnels. Daily the weight of all the chicks was measured to know the daily body masses. The input variables were dry-bulb air temperature, duration of thermal stress, chick age, and the output variable was the daily body mass of chicks. A database containing 840 records was used to train (70% of data), validate (15%) and test (15%) of models based on artificial neural networks (ANN). Between these models, the ANN was accurate in predicting the BM of chicks from 2 to 21 days of age after they were subjected to the input variables, and it had an R² of 0.9992 and a standard error of 5,23 g. This model enables the simulation of different scenarios that can assist in managerial decision-making, and it can be embedded in the heating controls.
id UFLA_a2d8c6205b2b7e67b2202614a5ec7de8
oai_identifier_str oai:localhost:1/40313
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Redes neuronales artificiales para la predicción de la masa corporal de pollosAnimal welfareArtificial intelligenceBroiler - Thermal comfortBienestar animalInteligencia artificialPollos - Confort térmicoBem-estar animalFrango - Conforto térmicoThe thermal environment inside a broiler house has a great influence on animal welfare and productivity during the production phase. Thus, the aim of this study was to predict body mass of chicks from 2 to 21 days of age when subjected to different intensities (27, 30, 33 and 36°C) and duration (1, 2, 3 and 4 days starting on the second day of life) using artificial neural networks (ANN). This experiment was conducted at Lavras, MG, Brazil. It was used 210 chicks of both sexes, from 1st to 22nd days of life. The chicks were raised inside four climate-controlled wind tunnels. Daily the weight of all the chicks was measured to know the daily body masses. The input variables were dry-bulb air temperature, duration of thermal stress, chick age, and the output variable was the daily body mass of chicks. A database containing 840 records was used to train (70% of data), validate (15%) and test (15%) of models based on artificial neural networks (ANN). Between these models, the ANN was accurate in predicting the BM of chicks from 2 to 21 days of age after they were subjected to the input variables, and it had an R² of 0.9992 and a standard error of 5,23 g. This model enables the simulation of different scenarios that can assist in managerial decision-making, and it can be embedded in the heating controls.Dentro de un galpón avícola el ambiente térmico ejerce una gran influencia en el bienestar y la productividad de los animales. De esta manera, el propósito de este trabajo fue predecir la masa corporal de polluelos de 2 a 21 días de vida, sujetos a condiciones de confort y estrés calórico en diferentes intensidades (27; 30; 33 y 36 °C) y períodos de duración (1; 2; 3 y 4 días a partir del 2o día de vida) a través de redes neuronales artificiales (RNA). El experimento se llevó a cabo en Lavras, MG, Brasil. 210 pollitos de ambos sexos se utilizaron del 1 al 22 día de vida alojados en cuatro túneles de viento climatizados. Todos los días, todos los polluelos fueron pesados para acompañar su masa corporal. Las variables de entrada fueron: temperatura de bulbo seco del aire, duración del estrés térmico, edad de las aves y como variable de salida, la masa corporal diaria de los pollitos. Se obtuvo una base de datos de 840 observaciones, siendo 70% utilizado para el entrenamiento de la red, un 15% para la validación y un 15% para pruebas de modelos basados en RNA. Se demostró que las RNAs eran precisas para predecir la masa corporal de los pollitos sometidos a diferentes intensidades y duraciones de condiciones térmicas presentando un R2 de 0,9992 y error estándar de 5,23 G. Además, las RNAs propiciaron la simulación de varios escenarios, que pueden ayudar en la toma de decisiones con relación a la gestión, y pueden ser incorporados a los sistemas de control de calefacción.Editorial Tecnológica de Costa Rica.2020-04-24T13:10:43Z2020-04-24T13:10:43Z2019-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFERRAZ, P. F. P et al. Redes neuronales artificiales para la predicción de la masa corporal de pollos. Tecnología en Marcha, [S. l.], v. 32, n. 7, p. 93-99, Apr. 2019.http://repositorio.ufla.br/jspui/handle/1/40313Tecnología en Marchareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessFerraz, Patrícia Ferreira PoncianoYanagi Junior, TadayukiJulio, Yamid Fabián HernándezFerraz, Gabriel Araújo e SilvaCecchin, Daianespa2023-06-13T13:06:42Zoai:localhost:1/40313Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-06-13T13:06:42Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Redes neuronales artificiales para la predicción de la masa corporal de pollos
title Redes neuronales artificiales para la predicción de la masa corporal de pollos
spellingShingle Redes neuronales artificiales para la predicción de la masa corporal de pollos
Ferraz, Patrícia Ferreira Ponciano
Animal welfare
Artificial intelligence
Broiler - Thermal comfort
Bienestar animal
Inteligencia artificial
Pollos - Confort térmico
Bem-estar animal
Frango - Conforto térmico
title_short Redes neuronales artificiales para la predicción de la masa corporal de pollos
title_full Redes neuronales artificiales para la predicción de la masa corporal de pollos
title_fullStr Redes neuronales artificiales para la predicción de la masa corporal de pollos
title_full_unstemmed Redes neuronales artificiales para la predicción de la masa corporal de pollos
title_sort Redes neuronales artificiales para la predicción de la masa corporal de pollos
author Ferraz, Patrícia Ferreira Ponciano
author_facet Ferraz, Patrícia Ferreira Ponciano
Yanagi Junior, Tadayuki
Julio, Yamid Fabián Hernández
Ferraz, Gabriel Araújo e Silva
Cecchin, Daiane
author_role author
author2 Yanagi Junior, Tadayuki
Julio, Yamid Fabián Hernández
Ferraz, Gabriel Araújo e Silva
Cecchin, Daiane
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ferraz, Patrícia Ferreira Ponciano
Yanagi Junior, Tadayuki
Julio, Yamid Fabián Hernández
Ferraz, Gabriel Araújo e Silva
Cecchin, Daiane
dc.subject.por.fl_str_mv Animal welfare
Artificial intelligence
Broiler - Thermal comfort
Bienestar animal
Inteligencia artificial
Pollos - Confort térmico
Bem-estar animal
Frango - Conforto térmico
topic Animal welfare
Artificial intelligence
Broiler - Thermal comfort
Bienestar animal
Inteligencia artificial
Pollos - Confort térmico
Bem-estar animal
Frango - Conforto térmico
description The thermal environment inside a broiler house has a great influence on animal welfare and productivity during the production phase. Thus, the aim of this study was to predict body mass of chicks from 2 to 21 days of age when subjected to different intensities (27, 30, 33 and 36°C) and duration (1, 2, 3 and 4 days starting on the second day of life) using artificial neural networks (ANN). This experiment was conducted at Lavras, MG, Brazil. It was used 210 chicks of both sexes, from 1st to 22nd days of life. The chicks were raised inside four climate-controlled wind tunnels. Daily the weight of all the chicks was measured to know the daily body masses. The input variables were dry-bulb air temperature, duration of thermal stress, chick age, and the output variable was the daily body mass of chicks. A database containing 840 records was used to train (70% of data), validate (15%) and test (15%) of models based on artificial neural networks (ANN). Between these models, the ANN was accurate in predicting the BM of chicks from 2 to 21 days of age after they were subjected to the input variables, and it had an R² of 0.9992 and a standard error of 5,23 g. This model enables the simulation of different scenarios that can assist in managerial decision-making, and it can be embedded in the heating controls.
publishDate 2019
dc.date.none.fl_str_mv 2019-04
2020-04-24T13:10:43Z
2020-04-24T13:10:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERRAZ, P. F. P et al. Redes neuronales artificiales para la predicción de la masa corporal de pollos. Tecnología en Marcha, [S. l.], v. 32, n. 7, p. 93-99, Apr. 2019.
http://repositorio.ufla.br/jspui/handle/1/40313
identifier_str_mv FERRAZ, P. F. P et al. Redes neuronales artificiales para la predicción de la masa corporal de pollos. Tecnología en Marcha, [S. l.], v. 32, n. 7, p. 93-99, Apr. 2019.
url http://repositorio.ufla.br/jspui/handle/1/40313
dc.language.iso.fl_str_mv spa
language spa
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editorial Tecnológica de Costa Rica.
publisher.none.fl_str_mv Editorial Tecnológica de Costa Rica.
dc.source.none.fl_str_mv Tecnología en Marcha
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439270316343296