Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica

Detalhes bibliográficos
Autor(a) principal: Teixeira, Mariá Andrade
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/46207
Resumo: Bioactives are components that promote human health benefits, they can be naturally present in some foods, but they can also be derived as ingredients in other food matrices developing this type of product. However, these compounds have limitations regarding their use, as they are unstable to the presence of light, oxygen, changes in pH and temperature. Therefore, it is necessary to develop techniques for protecting these compounds, such as microencapsulation methods. The method used for microencapsulation of α-tocopherol was ionic gelation using alginate combined with other biopolymers. To define the best microencapsulation conditions for α-tocopherol, the work was carried out in stages. In the first stage, emulsions were produced using alginate, combined with other materials (gum arabic, cashew gum, inulin, whey protein isolate and maltodextrin). These emulsions were characterized and analyzed for rheology. The formulations using an inulin and an independent cashew gum good homogeneity (span = 3.85) and good drop dispersion (microscopy), respectively, and for this reason, were the biopolymers selected for a second stage of the work. In this second stage, as emulsions they were atomized using two different types of nozzle (pressurized and ultrasonic air) for the production of α-tocopherol microbeads. These were characterized by FTIR-ATR, encapsulation efficiency, morphology, size distribution and release profile. Regarding the encapsulation efficiency, a higher concentration of α-tocopherol was observed in the microbeads produced using ultrasonic atomization. The different methods used directly interfered with the size of the microbeads produced. It was noticed that as microbeads produced from pressurized air source close to 130 μm and those produced by ultrasonic energy generated between 70 and 90 μm. Regarding the release profile, there was no significant difference regarding the stability of the microbeads produced by the different methods. In view of these results, the third stage of the project was carried out, in which the use of ultrasonic energy for the production of microbeads was defined. With that, alginate + inulin and alginate + cashew gum models were maintained, both 1.75% (w/v) + 0.5% (w/v), as microbeads were produced and then lyophilized. Again, microbeads were characterized. There was an increase in encapsulation efficiency when inhaling an inulin or a cashew gum in relation to pure alginate, from 76.31% to 80.83 and 78.68%, respectively. When kept at the highest temperature for 30 days, the complementary materials also contributed to a greater stability of the asset in the microbeads. At 40 °C to alginate and dissipated inulin microbeads, the highest antioxidant activity (11.85%) at the end of the study period. When analyzing the bioaccessibility of α-tocopherol, it was found that the presence of inulin resulted in greater bioaccessibility (58.60%), compared to microbeads produced using only alginate (16.22%). With this, we can conclude that it is possible to develop a controlled and efficient transmission system using alginate and complementary biopolymers that are compatible through atomization by ultrasonic energy, and that they promote improvements in the properties of microparticles allowing their incorporation into different food matrices.
id UFLA_e13f894c7979af4ca314c943b4c13a98
oai_identifier_str oai:localhost:1/46207
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônicaInfluence of the addition of biopolymers and different dripping techniques in the alpha-tocopherol encapsulation by ionic gelationEnergia ultrassônicaMicroencapsulaçãoAntioxidantesVitamina EInulinaGoma de cajueiroAlginatoUltrasonic energyMicroencapsulationAntioxidantVitamin EInulinCashew gumAlginateBiomateriais e Materiais BiocompatíveisBioactives are components that promote human health benefits, they can be naturally present in some foods, but they can also be derived as ingredients in other food matrices developing this type of product. However, these compounds have limitations regarding their use, as they are unstable to the presence of light, oxygen, changes in pH and temperature. Therefore, it is necessary to develop techniques for protecting these compounds, such as microencapsulation methods. The method used for microencapsulation of α-tocopherol was ionic gelation using alginate combined with other biopolymers. To define the best microencapsulation conditions for α-tocopherol, the work was carried out in stages. In the first stage, emulsions were produced using alginate, combined with other materials (gum arabic, cashew gum, inulin, whey protein isolate and maltodextrin). These emulsions were characterized and analyzed for rheology. The formulations using an inulin and an independent cashew gum good homogeneity (span = 3.85) and good drop dispersion (microscopy), respectively, and for this reason, were the biopolymers selected for a second stage of the work. In this second stage, as emulsions they were atomized using two different types of nozzle (pressurized and ultrasonic air) for the production of α-tocopherol microbeads. These were characterized by FTIR-ATR, encapsulation efficiency, morphology, size distribution and release profile. Regarding the encapsulation efficiency, a higher concentration of α-tocopherol was observed in the microbeads produced using ultrasonic atomization. The different methods used directly interfered with the size of the microbeads produced. It was noticed that as microbeads produced from pressurized air source close to 130 μm and those produced by ultrasonic energy generated between 70 and 90 μm. Regarding the release profile, there was no significant difference regarding the stability of the microbeads produced by the different methods. In view of these results, the third stage of the project was carried out, in which the use of ultrasonic energy for the production of microbeads was defined. With that, alginate + inulin and alginate + cashew gum models were maintained, both 1.75% (w/v) + 0.5% (w/v), as microbeads were produced and then lyophilized. Again, microbeads were characterized. There was an increase in encapsulation efficiency when inhaling an inulin or a cashew gum in relation to pure alginate, from 76.31% to 80.83 and 78.68%, respectively. When kept at the highest temperature for 30 days, the complementary materials also contributed to a greater stability of the asset in the microbeads. At 40 °C to alginate and dissipated inulin microbeads, the highest antioxidant activity (11.85%) at the end of the study period. When analyzing the bioaccessibility of α-tocopherol, it was found that the presence of inulin resulted in greater bioaccessibility (58.60%), compared to microbeads produced using only alginate (16.22%). With this, we can conclude that it is possible to develop a controlled and efficient transmission system using alginate and complementary biopolymers that are compatible through atomization by ultrasonic energy, and that they promote improvements in the properties of microparticles allowing their incorporation into different food matrices.Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Bioativos são componentes que promovem benefícios à saúde do ser humano, podem estar presentes naturalmente em alguns alimentos, mas também podem ser adicionados como ingredientes em outras matrizes alimentícias desenvolvendo esse tipo de produto. Porém, esses compostos possuem limitações quanto ao seu uso, pois são instáveis à presença de luz, oxigênio, mudanças de pH e temperatura. Com isso, é necessário desenvolver técnicas de proteção desses composto, como os métodos de microencapsulação. O método utilizado para a microencapsulação do α-tocoferol foi a gelificação iônica utilizando o alginato combinado a outros biopolímeros. Para definir as melhores condições de microencapsulação do α-tocoferol o trabalho foi realizado em etapas. Na primeira etapa, foram produzidas emulsões utilizando o alginato, combinado com outros materiais (goma arábica, goma de cajueiro, inulina, isolado proteico de soro e maltodextrina). Essas emulsões foram caracterizadas e analisadas quanto à reologia. As formulações utilizando a inulina e a goma de cajueiro apresentaram boa homogeneidade (span = 3,85) e boa dispersão de gotas (microscopia), respectivamente, e por isso, foram os biopolímeros selecionados para a segunda etapa do trabalho. Nessa segunda etapa, as emulsões foram atomizadas utilizando dois diferentes tipos de bico (ar pressurizado e ultrassônico) para a produção das microesferas de α-tocoferol. Essas foram caracterizadas por FTIR-ATR, eficiência de encapsulação, morfologia, distribuição de tamanho e perfil de liberação. Em relação à eficiência de encapsulação, notou-se uma maior concentração de α-tocoferol nas microesferas produzidas utilizando atomização ultrassônica. Os diferentes métodos utilizados interferiram diretamente no tamanho das microesferas produzidas. Percebeu-se que as microesferas produzidas a partir de ar pressurizados apresentaram tamanhos próximos a 130 μm e aquelas produzidas por energia ultrassônica apresentaram tamanhos entre 70 e 90 μm. Em relação ao perfil de liberação, não houve diferença significativa quanto à estabilidade das microesferas produzidas pelos diferentes métodos. Diante desses resultados, foi realizada então a terceira etapa do projeto, na qual, definiu-se utilização da energia ultrassônica para produção das microesferas. Com isso, foram mantidas as combinações alginato + inulina e alginato + goma de cajueiro, ambos 1,75% (m/v) + 0,5% (m/v), as microesferas foram produzidas e em seguida liofilizadas. Novamente, as microesferas foram caracterizadas. Houve um aumento na eficiência de encapsulação quando adicionada a inulina ou a goma de cajueiro em relação ao alginato puro, de 76,31% para 80,83 e 78,68%, respectivamente. Quando mantidas a temperaturas mais altas por 30 dias os materiais complementares também contribuiram para uma maior estabilidade do ativo nas microesferas. Na temperatura de 40 °C a microesferas de alginato e inulina apresentaram a maior atividade antioxidante (11,85%) ao final do período estudado. Ao analisar a bioacessibilidade do α-tocoferol, verificou-se que a presença de inulina resultou em uma maior bioacessibilidade (58,60%), em comparação às microesferas produzidas utilizando somente o alginato (16,22%). Com isso, podemos concluir que é possível desenvolver um sistema de liberação controlada eficiente e estável utilizando o alginato e biopolímeros complementares compatíveis através da atomização por energia ultrassônica, e que estes promovem melhorias nas propriedades das micropartículas permitindo a incorporação dessas em diferentes matrizes alimentícias.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia de BiomateriaisUFLAbrasilDepartamento de Ciências FlorestaisBotrel, Diego AlvarengaCarvalho, Elisangela Elena NunesDias, Marali VilelaCosta, Joyce Maria Gomes daCarvalho, Bruna Mara Aparecida deBertoldi, Michele CorrêaTeixeira, Mariá Andrade2021-04-22T16:44:48Z2021-04-22T16:44:48Z2021-04-222021-03-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfTEIXEIRA, M. A. Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica. 2021. 96 p. Tese (Doutorado em Engenharia de Biomateriais) – Universidade Federal de Lavras, Lavras, 2021.http://repositorio.ufla.br/jspui/handle/1/46207porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2021-04-22T16:44:48Zoai:localhost:1/46207Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-04-22T16:44:48Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica
Influence of the addition of biopolymers and different dripping techniques in the alpha-tocopherol encapsulation by ionic gelation
title Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica
spellingShingle Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica
Teixeira, Mariá Andrade
Energia ultrassônica
Microencapsulação
Antioxidantes
Vitamina E
Inulina
Goma de cajueiro
Alginato
Ultrasonic energy
Microencapsulation
Antioxidant
Vitamin E
Inulin
Cashew gum
Alginate
Biomateriais e Materiais Biocompatíveis
title_short Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica
title_full Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica
title_fullStr Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica
title_full_unstemmed Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica
title_sort Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica
author Teixeira, Mariá Andrade
author_facet Teixeira, Mariá Andrade
author_role author
dc.contributor.none.fl_str_mv Botrel, Diego Alvarenga
Carvalho, Elisangela Elena Nunes
Dias, Marali Vilela
Costa, Joyce Maria Gomes da
Carvalho, Bruna Mara Aparecida de
Bertoldi, Michele Corrêa
dc.contributor.author.fl_str_mv Teixeira, Mariá Andrade
dc.subject.por.fl_str_mv Energia ultrassônica
Microencapsulação
Antioxidantes
Vitamina E
Inulina
Goma de cajueiro
Alginato
Ultrasonic energy
Microencapsulation
Antioxidant
Vitamin E
Inulin
Cashew gum
Alginate
Biomateriais e Materiais Biocompatíveis
topic Energia ultrassônica
Microencapsulação
Antioxidantes
Vitamina E
Inulina
Goma de cajueiro
Alginato
Ultrasonic energy
Microencapsulation
Antioxidant
Vitamin E
Inulin
Cashew gum
Alginate
Biomateriais e Materiais Biocompatíveis
description Bioactives are components that promote human health benefits, they can be naturally present in some foods, but they can also be derived as ingredients in other food matrices developing this type of product. However, these compounds have limitations regarding their use, as they are unstable to the presence of light, oxygen, changes in pH and temperature. Therefore, it is necessary to develop techniques for protecting these compounds, such as microencapsulation methods. The method used for microencapsulation of α-tocopherol was ionic gelation using alginate combined with other biopolymers. To define the best microencapsulation conditions for α-tocopherol, the work was carried out in stages. In the first stage, emulsions were produced using alginate, combined with other materials (gum arabic, cashew gum, inulin, whey protein isolate and maltodextrin). These emulsions were characterized and analyzed for rheology. The formulations using an inulin and an independent cashew gum good homogeneity (span = 3.85) and good drop dispersion (microscopy), respectively, and for this reason, were the biopolymers selected for a second stage of the work. In this second stage, as emulsions they were atomized using two different types of nozzle (pressurized and ultrasonic air) for the production of α-tocopherol microbeads. These were characterized by FTIR-ATR, encapsulation efficiency, morphology, size distribution and release profile. Regarding the encapsulation efficiency, a higher concentration of α-tocopherol was observed in the microbeads produced using ultrasonic atomization. The different methods used directly interfered with the size of the microbeads produced. It was noticed that as microbeads produced from pressurized air source close to 130 μm and those produced by ultrasonic energy generated between 70 and 90 μm. Regarding the release profile, there was no significant difference regarding the stability of the microbeads produced by the different methods. In view of these results, the third stage of the project was carried out, in which the use of ultrasonic energy for the production of microbeads was defined. With that, alginate + inulin and alginate + cashew gum models were maintained, both 1.75% (w/v) + 0.5% (w/v), as microbeads were produced and then lyophilized. Again, microbeads were characterized. There was an increase in encapsulation efficiency when inhaling an inulin or a cashew gum in relation to pure alginate, from 76.31% to 80.83 and 78.68%, respectively. When kept at the highest temperature for 30 days, the complementary materials also contributed to a greater stability of the asset in the microbeads. At 40 °C to alginate and dissipated inulin microbeads, the highest antioxidant activity (11.85%) at the end of the study period. When analyzing the bioaccessibility of α-tocopherol, it was found that the presence of inulin resulted in greater bioaccessibility (58.60%), compared to microbeads produced using only alginate (16.22%). With this, we can conclude that it is possible to develop a controlled and efficient transmission system using alginate and complementary biopolymers that are compatible through atomization by ultrasonic energy, and that they promote improvements in the properties of microparticles allowing their incorporation into different food matrices.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-22T16:44:48Z
2021-04-22T16:44:48Z
2021-04-22
2021-03-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv TEIXEIRA, M. A. Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica. 2021. 96 p. Tese (Doutorado em Engenharia de Biomateriais) – Universidade Federal de Lavras, Lavras, 2021.
http://repositorio.ufla.br/jspui/handle/1/46207
identifier_str_mv TEIXEIRA, M. A. Influência da adição de biopolímeros e de diferentes técnicas de gotejamento na encapsulação de alfa-tocoferol por gelificação iônica. 2021. 96 p. Tese (Doutorado em Engenharia de Biomateriais) – Universidade Federal de Lavras, Lavras, 2021.
url http://repositorio.ufla.br/jspui/handle/1/46207
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Biomateriais
UFLA
brasil
Departamento de Ciências Florestais
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Biomateriais
UFLA
brasil
Departamento de Ciências Florestais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835064575197184