Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis

Detalhes bibliográficos
Autor(a) principal: Barros, Hanna Elisia Araújo de
Data de Publicação: 2021
Outros Autores: Alexandre, Ana Cláudia Silveira, Campolina, Gabriela Aguiar, Alvarenga, Gabriela Fontes, Silva, Lara Maria dos Santos Ferraz e, Natarelli, Caio Vinicius Lima, Carvalho, Elisângela Elena Nunes, Vilas Boas, Eduardo Valério de Barros
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/49954
Resumo: Edible seeds, especially those known by the population as nuts, have their consumption associated with functional appeal. The present study aimed to compare and group nine different seeds, traditional and regional, according to their similarities, in terms of moisture, total phenolic compounds (TPC) and antioxidant activity, through multivariate analyses. All results were submitted to Principal Component Analysis (PCA), Hierarchical Clusters (HCA) and Kohonen's self-organizing maps (ANN/KSOM). The seeds differed in terms of moisture content, TPC and antioxidant activity. The walnut butterfly stood out with the highest levels of TPC and antioxidant activity. In the multivariate analyses application, three groups were formed: i) hazel, baru, Brazil, macadamia, almond and cashew; ii) pequi and marolo; iii) walnut butterfly. It is concluded that the seeds can be separated into three groups, with ANN/KSOMs being the most self-explanatory analysis and that regional seeds are nutritionally similar to those traditionally consumed.
id UFLA_ec655b635b240c0e7add1d42fee532e1
oai_identifier_str oai:localhost:1/49954
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysisBioactive compoundsNutsPrincipal component analysisHierarchical clusters analysisArtificial neural networkCompostos bioativosNozesAnálise de Componentes PrincipaisMétodos hierárquicos da análise de clusterRede neural artificialEdible seeds, especially those known by the population as nuts, have their consumption associated with functional appeal. The present study aimed to compare and group nine different seeds, traditional and regional, according to their similarities, in terms of moisture, total phenolic compounds (TPC) and antioxidant activity, through multivariate analyses. All results were submitted to Principal Component Analysis (PCA), Hierarchical Clusters (HCA) and Kohonen's self-organizing maps (ANN/KSOM). The seeds differed in terms of moisture content, TPC and antioxidant activity. The walnut butterfly stood out with the highest levels of TPC and antioxidant activity. In the multivariate analyses application, three groups were formed: i) hazel, baru, Brazil, macadamia, almond and cashew; ii) pequi and marolo; iii) walnut butterfly. It is concluded that the seeds can be separated into three groups, with ANN/KSOMs being the most self-explanatory analysis and that regional seeds are nutritionally similar to those traditionally consumed.Elsevier2022-05-16T22:24:49Z2022-05-16T22:24:49Z2021-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfBARROS, H. E. A. de et al. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT - Food Science and Technology, [S.I.], v. 152, Dec. 2021. DOI: https://doi.org/10.1016/j.lwt.2021.112372.http://repositorio.ufla.br/jspui/handle/1/49954LWT - Food Science and Technologyreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessBarros, Hanna Elisia Araújo deAlexandre, Ana Cláudia SilveiraCampolina, Gabriela AguiarAlvarenga, Gabriela FontesSilva, Lara Maria dos Santos Ferraz eNatarelli, Caio Vinicius LimaCarvalho, Elisângela Elena NunesVilas Boas, Eduardo Valério de Barroseng2022-05-16T22:25:13Zoai:localhost:1/49954Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2022-05-16T22:25:13Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
title Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
spellingShingle Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
Barros, Hanna Elisia Araújo de
Bioactive compounds
Nuts
Principal component analysis
Hierarchical clusters analysis
Artificial neural network
Compostos bioativos
Nozes
Análise de Componentes Principais
Métodos hierárquicos da análise de cluster
Rede neural artificial
title_short Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
title_full Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
title_fullStr Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
title_full_unstemmed Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
title_sort Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
author Barros, Hanna Elisia Araújo de
author_facet Barros, Hanna Elisia Araújo de
Alexandre, Ana Cláudia Silveira
Campolina, Gabriela Aguiar
Alvarenga, Gabriela Fontes
Silva, Lara Maria dos Santos Ferraz e
Natarelli, Caio Vinicius Lima
Carvalho, Elisângela Elena Nunes
Vilas Boas, Eduardo Valério de Barros
author_role author
author2 Alexandre, Ana Cláudia Silveira
Campolina, Gabriela Aguiar
Alvarenga, Gabriela Fontes
Silva, Lara Maria dos Santos Ferraz e
Natarelli, Caio Vinicius Lima
Carvalho, Elisângela Elena Nunes
Vilas Boas, Eduardo Valério de Barros
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Barros, Hanna Elisia Araújo de
Alexandre, Ana Cláudia Silveira
Campolina, Gabriela Aguiar
Alvarenga, Gabriela Fontes
Silva, Lara Maria dos Santos Ferraz e
Natarelli, Caio Vinicius Lima
Carvalho, Elisângela Elena Nunes
Vilas Boas, Eduardo Valério de Barros
dc.subject.por.fl_str_mv Bioactive compounds
Nuts
Principal component analysis
Hierarchical clusters analysis
Artificial neural network
Compostos bioativos
Nozes
Análise de Componentes Principais
Métodos hierárquicos da análise de cluster
Rede neural artificial
topic Bioactive compounds
Nuts
Principal component analysis
Hierarchical clusters analysis
Artificial neural network
Compostos bioativos
Nozes
Análise de Componentes Principais
Métodos hierárquicos da análise de cluster
Rede neural artificial
description Edible seeds, especially those known by the population as nuts, have their consumption associated with functional appeal. The present study aimed to compare and group nine different seeds, traditional and regional, according to their similarities, in terms of moisture, total phenolic compounds (TPC) and antioxidant activity, through multivariate analyses. All results were submitted to Principal Component Analysis (PCA), Hierarchical Clusters (HCA) and Kohonen's self-organizing maps (ANN/KSOM). The seeds differed in terms of moisture content, TPC and antioxidant activity. The walnut butterfly stood out with the highest levels of TPC and antioxidant activity. In the multivariate analyses application, three groups were formed: i) hazel, baru, Brazil, macadamia, almond and cashew; ii) pequi and marolo; iii) walnut butterfly. It is concluded that the seeds can be separated into three groups, with ANN/KSOMs being the most self-explanatory analysis and that regional seeds are nutritionally similar to those traditionally consumed.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
2022-05-16T22:24:49Z
2022-05-16T22:24:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv BARROS, H. E. A. de et al. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT - Food Science and Technology, [S.I.], v. 152, Dec. 2021. DOI: https://doi.org/10.1016/j.lwt.2021.112372.
http://repositorio.ufla.br/jspui/handle/1/49954
identifier_str_mv BARROS, H. E. A. de et al. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT - Food Science and Technology, [S.I.], v. 152, Dec. 2021. DOI: https://doi.org/10.1016/j.lwt.2021.112372.
url http://repositorio.ufla.br/jspui/handle/1/49954
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv LWT - Food Science and Technology
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439367241465856