Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/49954 |
Resumo: | Edible seeds, especially those known by the population as nuts, have their consumption associated with functional appeal. The present study aimed to compare and group nine different seeds, traditional and regional, according to their similarities, in terms of moisture, total phenolic compounds (TPC) and antioxidant activity, through multivariate analyses. All results were submitted to Principal Component Analysis (PCA), Hierarchical Clusters (HCA) and Kohonen's self-organizing maps (ANN/KSOM). The seeds differed in terms of moisture content, TPC and antioxidant activity. The walnut butterfly stood out with the highest levels of TPC and antioxidant activity. In the multivariate analyses application, three groups were formed: i) hazel, baru, Brazil, macadamia, almond and cashew; ii) pequi and marolo; iii) walnut butterfly. It is concluded that the seeds can be separated into three groups, with ANN/KSOMs being the most self-explanatory analysis and that regional seeds are nutritionally similar to those traditionally consumed. |
id |
UFLA_ec655b635b240c0e7add1d42fee532e1 |
---|---|
oai_identifier_str |
oai:localhost:1/49954 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysisBioactive compoundsNutsPrincipal component analysisHierarchical clusters analysisArtificial neural networkCompostos bioativosNozesAnálise de Componentes PrincipaisMétodos hierárquicos da análise de clusterRede neural artificialEdible seeds, especially those known by the population as nuts, have their consumption associated with functional appeal. The present study aimed to compare and group nine different seeds, traditional and regional, according to their similarities, in terms of moisture, total phenolic compounds (TPC) and antioxidant activity, through multivariate analyses. All results were submitted to Principal Component Analysis (PCA), Hierarchical Clusters (HCA) and Kohonen's self-organizing maps (ANN/KSOM). The seeds differed in terms of moisture content, TPC and antioxidant activity. The walnut butterfly stood out with the highest levels of TPC and antioxidant activity. In the multivariate analyses application, three groups were formed: i) hazel, baru, Brazil, macadamia, almond and cashew; ii) pequi and marolo; iii) walnut butterfly. It is concluded that the seeds can be separated into three groups, with ANN/KSOMs being the most self-explanatory analysis and that regional seeds are nutritionally similar to those traditionally consumed.Elsevier2022-05-16T22:24:49Z2022-05-16T22:24:49Z2021-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfBARROS, H. E. A. de et al. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT - Food Science and Technology, [S.I.], v. 152, Dec. 2021. DOI: https://doi.org/10.1016/j.lwt.2021.112372.http://repositorio.ufla.br/jspui/handle/1/49954LWT - Food Science and Technologyreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessBarros, Hanna Elisia Araújo deAlexandre, Ana Cláudia SilveiraCampolina, Gabriela AguiarAlvarenga, Gabriela FontesSilva, Lara Maria dos Santos Ferraz eNatarelli, Caio Vinicius LimaCarvalho, Elisângela Elena NunesVilas Boas, Eduardo Valério de Barroseng2022-05-16T22:25:13Zoai:localhost:1/49954Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2022-05-16T22:25:13Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis |
title |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis |
spellingShingle |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis Barros, Hanna Elisia Araújo de Bioactive compounds Nuts Principal component analysis Hierarchical clusters analysis Artificial neural network Compostos bioativos Nozes Análise de Componentes Principais Métodos hierárquicos da análise de cluster Rede neural artificial |
title_short |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis |
title_full |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis |
title_fullStr |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis |
title_full_unstemmed |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis |
title_sort |
Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis |
author |
Barros, Hanna Elisia Araújo de |
author_facet |
Barros, Hanna Elisia Araújo de Alexandre, Ana Cláudia Silveira Campolina, Gabriela Aguiar Alvarenga, Gabriela Fontes Silva, Lara Maria dos Santos Ferraz e Natarelli, Caio Vinicius Lima Carvalho, Elisângela Elena Nunes Vilas Boas, Eduardo Valério de Barros |
author_role |
author |
author2 |
Alexandre, Ana Cláudia Silveira Campolina, Gabriela Aguiar Alvarenga, Gabriela Fontes Silva, Lara Maria dos Santos Ferraz e Natarelli, Caio Vinicius Lima Carvalho, Elisângela Elena Nunes Vilas Boas, Eduardo Valério de Barros |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Barros, Hanna Elisia Araújo de Alexandre, Ana Cláudia Silveira Campolina, Gabriela Aguiar Alvarenga, Gabriela Fontes Silva, Lara Maria dos Santos Ferraz e Natarelli, Caio Vinicius Lima Carvalho, Elisângela Elena Nunes Vilas Boas, Eduardo Valério de Barros |
dc.subject.por.fl_str_mv |
Bioactive compounds Nuts Principal component analysis Hierarchical clusters analysis Artificial neural network Compostos bioativos Nozes Análise de Componentes Principais Métodos hierárquicos da análise de cluster Rede neural artificial |
topic |
Bioactive compounds Nuts Principal component analysis Hierarchical clusters analysis Artificial neural network Compostos bioativos Nozes Análise de Componentes Principais Métodos hierárquicos da análise de cluster Rede neural artificial |
description |
Edible seeds, especially those known by the population as nuts, have their consumption associated with functional appeal. The present study aimed to compare and group nine different seeds, traditional and regional, according to their similarities, in terms of moisture, total phenolic compounds (TPC) and antioxidant activity, through multivariate analyses. All results were submitted to Principal Component Analysis (PCA), Hierarchical Clusters (HCA) and Kohonen's self-organizing maps (ANN/KSOM). The seeds differed in terms of moisture content, TPC and antioxidant activity. The walnut butterfly stood out with the highest levels of TPC and antioxidant activity. In the multivariate analyses application, three groups were formed: i) hazel, baru, Brazil, macadamia, almond and cashew; ii) pequi and marolo; iii) walnut butterfly. It is concluded that the seeds can be separated into three groups, with ANN/KSOMs being the most self-explanatory analysis and that regional seeds are nutritionally similar to those traditionally consumed. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 2022-05-16T22:24:49Z 2022-05-16T22:24:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BARROS, H. E. A. de et al. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT - Food Science and Technology, [S.I.], v. 152, Dec. 2021. DOI: https://doi.org/10.1016/j.lwt.2021.112372. http://repositorio.ufla.br/jspui/handle/1/49954 |
identifier_str_mv |
BARROS, H. E. A. de et al. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT - Food Science and Technology, [S.I.], v. 152, Dec. 2021. DOI: https://doi.org/10.1016/j.lwt.2021.112372. |
url |
http://repositorio.ufla.br/jspui/handle/1/49954 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
LWT - Food Science and Technology reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439367241465856 |