A stochastic approach to generate emergent behaviors in robotic swarms

Detalhes bibliográficos
Autor(a) principal: Paulo Alfredo Frota Rezeck
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/65401
Resumo: In this dissertation, we present a novel methodology that extends the concepts of Gibbs Random Fields (GRFs) to the context of swarm robotics, allowing us to design control mechanisms that produce different swarm behaviors using only local information. In this context, a GRF is a probabilistic graph model that describes the interactions and behaviors of a group of robots. The robots are assumed to interact with each other in a way that can be described by a set of random variables. These variables define a random field, and the joint probability function is a Gibbs distribution that describes the probability of the swarm being in a given configuration. By using a Markov Chain Monte Carlo (MCMC) method, each robot sample velocity commands in a decentralized way, forcing them to move toward the global minimum of the potential, leading the entire swarm to converge to the desired behavior. This approach has several advantages over more traditional methods for controlling the behavior of a swarm. For example, it allows for decentralized control, where each robot makes decisions based on local information rather than relying on a central controller. This makes the system more robust and scalable, as there is no single point of failure, and the swarm can continue to operate even if individual robots fail. Additionally, it allows for a more flexible and adaptable approach to swarm behavior, as the potential function can be modified to account for changing environmental conditions or new goals for the swarm. To demonstrate the application of our methodology, we investigate the design of methods that tackle three significant challenges in swarm robotics: flocking and segregation, cooperative object transportation, and pattern formation. Numerical simulations and real-world experiments show that these methods are scalable, adaptable, and robust, even in the presence of noise, failures, and changes in the environment. More specifically, the first method shows to be able to adequately segregate a group of heterogeneous robots while keeping cohesive navigation and avoiding obstacles in the environment. The second method supports the transportation of objects of different shapes, sizes, and masses. It is also scalable and resilient to changes in goal location and robot failures. The third method experiments show the ability to create diverse patterns using different neighborhood constraints and that it may serve as a basis for more tangible applications such as the construction of chain or bridge-like structures using a swarm of heterogeneous robots. Overall, the proposed methodology shows promise for contributing to the field of swarm robotics, enabling the designing of mechanisms that adequately produce different behaviors of a swarm of robots.
id UFMG_da3117710c6e31bbab203e8e4501b9b9
oai_identifier_str oai:repositorio.ufmg.br:1843/65401
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Luiz Chaimowiczhttp://lattes.cnpq.br/4499928813481251Douglas Guimarães MacharetRenato Martins AssunçãoValdir Grassi JúniorDavid Julián Saldaña Santacruzhttp://lattes.cnpq.br/6192098741452112Paulo Alfredo Frota Rezeck2024-03-06T21:31:21Z2024-03-06T21:31:21Z2023-12-04http://hdl.handle.net/1843/65401In this dissertation, we present a novel methodology that extends the concepts of Gibbs Random Fields (GRFs) to the context of swarm robotics, allowing us to design control mechanisms that produce different swarm behaviors using only local information. In this context, a GRF is a probabilistic graph model that describes the interactions and behaviors of a group of robots. The robots are assumed to interact with each other in a way that can be described by a set of random variables. These variables define a random field, and the joint probability function is a Gibbs distribution that describes the probability of the swarm being in a given configuration. By using a Markov Chain Monte Carlo (MCMC) method, each robot sample velocity commands in a decentralized way, forcing them to move toward the global minimum of the potential, leading the entire swarm to converge to the desired behavior. This approach has several advantages over more traditional methods for controlling the behavior of a swarm. For example, it allows for decentralized control, where each robot makes decisions based on local information rather than relying on a central controller. This makes the system more robust and scalable, as there is no single point of failure, and the swarm can continue to operate even if individual robots fail. Additionally, it allows for a more flexible and adaptable approach to swarm behavior, as the potential function can be modified to account for changing environmental conditions or new goals for the swarm. To demonstrate the application of our methodology, we investigate the design of methods that tackle three significant challenges in swarm robotics: flocking and segregation, cooperative object transportation, and pattern formation. Numerical simulations and real-world experiments show that these methods are scalable, adaptable, and robust, even in the presence of noise, failures, and changes in the environment. More specifically, the first method shows to be able to adequately segregate a group of heterogeneous robots while keeping cohesive navigation and avoiding obstacles in the environment. The second method supports the transportation of objects of different shapes, sizes, and masses. It is also scalable and resilient to changes in goal location and robot failures. The third method experiments show the ability to create diverse patterns using different neighborhood constraints and that it may serve as a basis for more tangible applications such as the construction of chain or bridge-like structures using a swarm of heterogeneous robots. Overall, the proposed methodology shows promise for contributing to the field of swarm robotics, enabling the designing of mechanisms that adequately produce different behaviors of a swarm of robots.Esta tese apresenta uma nova metodologia que estende os conceitos de Campos Aleatórios de Gibbs (GRFs) para o contexto da robótica de enxame, permitindo projetar mecanismos de controle que produzem diferentes comportamentos de enxame usando apenas informações locais. Nesse contexto, um GRF é um modelo gráfico probabilístico que descreve as interações e comportamentos de um grupo de robôs. Assume-se que os robôs interagem uns com os outros de uma forma que pode ser descrita por um conjunto de variáveis aleatórias. Essas variáveis definem um campo aleatório e a função de probabilidade conjunta é uma distribuição de Gibbs que descreve a probabilidade do enxame estar em uma determinada configuração. Utilizando o método Markov Chain Monte Carlo (MCMC), cada robô amostra comandos de velocidade de forma descentralizada, forçando-os a se moverem em direção ao mínimo global do potencial, o que direciona todo o enxame a convergir para o comportamento desejado. Esta abordagem tem várias vantagens sobre os métodos mais tradicionais para controlar o comportamento de um enxame. Por exemplo, permite o controle descentralizado, onde cada robô toma decisões com base em informações locais, em vez de depender de um controlador central. Isso torna o sistema mais robusto e escalável, pois não existe um único ponto de falha e o enxame pode continuar a operar mesmo se os robôs individuais falharem. Além disso, permite uma abordagem mais flexível e adaptável ao comportamento do enxame, pois a função potencial pode ser modificada para levar em conta mudanças nas condições ambientais ou novos objetivos para o enxame. Para demonstrar a aplicação de nossa metodologia, investigamos o design de métodos que abordam três desafios significativos na robótica de enxame: flocking e segregação, transporte cooperativo de objetos e formação de padrões. Simulações numéricas e experimentos utilizando robôs reais mostram que esses métodos são escaláveis, adaptáveis e robustos, mesmo na presença de ruído, falhas e mudanças no ambiente. Mais especificamente, o primeiro método mostra ser capaz de segregar adequadamente um grupo de robôs heterogêneos, mantendo a navegação coesa e evitando obstáculos no ambiente. O segundo método demonstra o transporte de objetos de diferentes formas, tamanhos e massas. Também é escalável e resiliente a mudanças na localização do objetivo e falhas nos robôs. Os experimentos do terceiro método mostram a capacidade de criar diversos padrões usando diferentes restrições de vizinhança e que podem servir de base para aplicações mais tangíveis de um enxame de robôs heterogêneos, como a construção de estruturas encadeadas ou semelhantes a pontes dinâmicas. No geral, a metodologia proposta mostra-se promissora e contribui para o campo da robótica de enxame, permitindo a concepção de mecanismos que produzam adequadamente diferentes comportamentos de um enxame de robôs.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciência da ComputaçãoUFMGBrasilICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃOhttp://creativecommons.org/licenses/by-nc/3.0/pt/info:eu-repo/semantics/openAccessComputação – TesesRobótica – TesesRobôs – Sistema de controles – TesesRoboticsMulti-agent systemSwarm roboticsProbabilistic roboticsA stochastic approach to generate emergent behaviors in robotic swarmsUma abordagem estocástica para a criação de comportamentos emergentes em enxames robóticosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALTese_Doutorado_Paulo_Rezeck.pdfTese_Doutorado_Paulo_Rezeck.pdfapplication/pdf19862560https://repositorio.ufmg.br/bitstream/1843/65401/1/Tese_Doutorado_Paulo_Rezeck.pdfee8b7497ba8888f63b0e3290508a3e7bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://repositorio.ufmg.br/bitstream/1843/65401/2/license_rdf33b8016dc5c4681c1e7a582a4161162cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/65401/3/license.txtcda590c95a0b51b4d15f60c9642ca272MD531843/654012024-03-06 18:31:22.088oai:repositorio.ufmg.br:1843/65401TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2024-03-06T21:31:22Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv A stochastic approach to generate emergent behaviors in robotic swarms
dc.title.alternative.pt_BR.fl_str_mv Uma abordagem estocástica para a criação de comportamentos emergentes em enxames robóticos
title A stochastic approach to generate emergent behaviors in robotic swarms
spellingShingle A stochastic approach to generate emergent behaviors in robotic swarms
Paulo Alfredo Frota Rezeck
Robotics
Multi-agent system
Swarm robotics
Probabilistic robotics
Computação – Teses
Robótica – Teses
Robôs – Sistema de controles – Teses
title_short A stochastic approach to generate emergent behaviors in robotic swarms
title_full A stochastic approach to generate emergent behaviors in robotic swarms
title_fullStr A stochastic approach to generate emergent behaviors in robotic swarms
title_full_unstemmed A stochastic approach to generate emergent behaviors in robotic swarms
title_sort A stochastic approach to generate emergent behaviors in robotic swarms
author Paulo Alfredo Frota Rezeck
author_facet Paulo Alfredo Frota Rezeck
author_role author
dc.contributor.advisor1.fl_str_mv Luiz Chaimowicz
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4499928813481251
dc.contributor.referee1.fl_str_mv Douglas Guimarães Macharet
dc.contributor.referee2.fl_str_mv Renato Martins Assunção
dc.contributor.referee3.fl_str_mv Valdir Grassi Júnior
dc.contributor.referee4.fl_str_mv David Julián Saldaña Santacruz
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6192098741452112
dc.contributor.author.fl_str_mv Paulo Alfredo Frota Rezeck
contributor_str_mv Luiz Chaimowicz
Douglas Guimarães Macharet
Renato Martins Assunção
Valdir Grassi Júnior
David Julián Saldaña Santacruz
dc.subject.por.fl_str_mv Robotics
Multi-agent system
Swarm robotics
Probabilistic robotics
topic Robotics
Multi-agent system
Swarm robotics
Probabilistic robotics
Computação – Teses
Robótica – Teses
Robôs – Sistema de controles – Teses
dc.subject.other.pt_BR.fl_str_mv Computação – Teses
Robótica – Teses
Robôs – Sistema de controles – Teses
description In this dissertation, we present a novel methodology that extends the concepts of Gibbs Random Fields (GRFs) to the context of swarm robotics, allowing us to design control mechanisms that produce different swarm behaviors using only local information. In this context, a GRF is a probabilistic graph model that describes the interactions and behaviors of a group of robots. The robots are assumed to interact with each other in a way that can be described by a set of random variables. These variables define a random field, and the joint probability function is a Gibbs distribution that describes the probability of the swarm being in a given configuration. By using a Markov Chain Monte Carlo (MCMC) method, each robot sample velocity commands in a decentralized way, forcing them to move toward the global minimum of the potential, leading the entire swarm to converge to the desired behavior. This approach has several advantages over more traditional methods for controlling the behavior of a swarm. For example, it allows for decentralized control, where each robot makes decisions based on local information rather than relying on a central controller. This makes the system more robust and scalable, as there is no single point of failure, and the swarm can continue to operate even if individual robots fail. Additionally, it allows for a more flexible and adaptable approach to swarm behavior, as the potential function can be modified to account for changing environmental conditions or new goals for the swarm. To demonstrate the application of our methodology, we investigate the design of methods that tackle three significant challenges in swarm robotics: flocking and segregation, cooperative object transportation, and pattern formation. Numerical simulations and real-world experiments show that these methods are scalable, adaptable, and robust, even in the presence of noise, failures, and changes in the environment. More specifically, the first method shows to be able to adequately segregate a group of heterogeneous robots while keeping cohesive navigation and avoiding obstacles in the environment. The second method supports the transportation of objects of different shapes, sizes, and masses. It is also scalable and resilient to changes in goal location and robot failures. The third method experiments show the ability to create diverse patterns using different neighborhood constraints and that it may serve as a basis for more tangible applications such as the construction of chain or bridge-like structures using a swarm of heterogeneous robots. Overall, the proposed methodology shows promise for contributing to the field of swarm robotics, enabling the designing of mechanisms that adequately produce different behaviors of a swarm of robots.
publishDate 2023
dc.date.issued.fl_str_mv 2023-12-04
dc.date.accessioned.fl_str_mv 2024-03-06T21:31:21Z
dc.date.available.fl_str_mv 2024-03-06T21:31:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/65401
url http://hdl.handle.net/1843/65401
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/pt/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/65401/1/Tese_Doutorado_Paulo_Rezeck.pdf
https://repositorio.ufmg.br/bitstream/1843/65401/2/license_rdf
https://repositorio.ufmg.br/bitstream/1843/65401/3/license.txt
bitstream.checksum.fl_str_mv ee8b7497ba8888f63b0e3290508a3e7b
33b8016dc5c4681c1e7a582a4161162c
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589461080014848