Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional Universidade Franciscana |
Texto Completo: | http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/977 |
Resumo: | This investigation was developed within the scope of Postgraduate Program in the Teaching of Science and Mathematics, in the research line “Teaching and learning in Science and Mathematics”. The aim was to analyze how computational thinking, linked to problem resolution according to Robbie Case’s theory in teaching, can contribute to the initial training of Mathematics professors. The methodology had a qualitative approach, and it was a case study. A subject, in the form of complementary curricular activity, was offered to students of Mathematics, in the second semester of 2019. They studied patterns and regularities with Computational Thinking via Python programming language, Python Turtle, and unplugged computing, with Turing machine. The data collection happened during the subject, with the help of different evidence sources: observation, survey, interview, field journal, and artifacts produced by the students about solved problems and problems proposed by them, with the respective solutions. The data analysis was carried out with the theory of Robbie Case. The solutions made by the students in terms of the strategy were analyzed and represented closely related to Executive Control Structure. The concepts involved, their representations and their established relations were expressed in form of Central Conceptual Structure, as the network of nodes and interconnections of the concepts.With the obtained results, the regulatory processes of the Case during the classes and in resolutions developed by students of Mathematics were showed. It was observed that the Imitation regulatory process happened especially when a new concept was worked on. The problem creation by the students demanded contextualization, content, its articulation with Computational Thinking, and the establishment of connections with other mathematical contents. It was observed that developed solution strategies were increasing, as the complexity of problems increased. The students used different ways of data representation about the problems: numeric, algebraic, and visual. Relations were established between Computational Thinking and Algebraic Thinking in a mutual form. The skills of Computational Thinking revealed in these relations were data collection, data analysis, data representation, algorithms/procedures, abstraction, and problem decomposition. There was evidence that skills of Computational Thinking can compose a way of problem resolution in the teaching of Mathematics, and that the future professors recognized this possibility and put it into practice in problem resolution. |
id |
UFN-1_2411f79d6c190fd8ced5dd2d752b9ca2 |
---|---|
oai_identifier_str |
oai:tede.universidadefranciscana.edu.br:UFN-BDTD/977 |
network_acronym_str |
UFN-1 |
network_name_str |
Repositório Institucional Universidade Franciscana |
repository_id_str |
http://www.tede.universidadefranciscana.edu.br:8080/oai/request |
spelling |
Isaia, Silvia Maria de AguiarBisognin, VanildeBittencourt, João RicardoValente, José ArmandoBisognin, EleniScremin, GreiceCanal, Ana Paula2021-06-16T13:17:30Z2021-03-25Canal, Ana Paula. Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case. 2021. 319f. Tese( Programa de Pós-Graduação em Ensino de Ciências e Matemática) - Universidade Franciscana, Santa Maria - RS .http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/977This investigation was developed within the scope of Postgraduate Program in the Teaching of Science and Mathematics, in the research line “Teaching and learning in Science and Mathematics”. The aim was to analyze how computational thinking, linked to problem resolution according to Robbie Case’s theory in teaching, can contribute to the initial training of Mathematics professors. The methodology had a qualitative approach, and it was a case study. A subject, in the form of complementary curricular activity, was offered to students of Mathematics, in the second semester of 2019. They studied patterns and regularities with Computational Thinking via Python programming language, Python Turtle, and unplugged computing, with Turing machine. The data collection happened during the subject, with the help of different evidence sources: observation, survey, interview, field journal, and artifacts produced by the students about solved problems and problems proposed by them, with the respective solutions. The data analysis was carried out with the theory of Robbie Case. The solutions made by the students in terms of the strategy were analyzed and represented closely related to Executive Control Structure. The concepts involved, their representations and their established relations were expressed in form of Central Conceptual Structure, as the network of nodes and interconnections of the concepts.With the obtained results, the regulatory processes of the Case during the classes and in resolutions developed by students of Mathematics were showed. It was observed that the Imitation regulatory process happened especially when a new concept was worked on. The problem creation by the students demanded contextualization, content, its articulation with Computational Thinking, and the establishment of connections with other mathematical contents. It was observed that developed solution strategies were increasing, as the complexity of problems increased. The students used different ways of data representation about the problems: numeric, algebraic, and visual. Relations were established between Computational Thinking and Algebraic Thinking in a mutual form. The skills of Computational Thinking revealed in these relations were data collection, data analysis, data representation, algorithms/procedures, abstraction, and problem decomposition. There was evidence that skills of Computational Thinking can compose a way of problem resolution in the teaching of Mathematics, and that the future professors recognized this possibility and put it into practice in problem resolution.Esta investigação foi desenvolvida no âmbito do Programa de Pós-graduação em Ensino de Ciências e Matemática, na linha de pesquisa “Ensino e aprendizagem em Ciências e Matemática”. O objetivo foi analisar como o Pensamento Computacional articulado à resolução de problemas, conforme a teoria de Robbie Case, no ensino, pode contribuir para a formação inicial de professores de Matemática. A metodologia teve abordagem qualitativa, do tipo estudo de caso. Uma disciplina, em forma de atividade curricular complementar, foi ofertada aos licenciandos em Matemática, no segundo semestre do ano de 2019. Foram trabalhados padrões e regularidades, com o Pensamento Computacional, por meio da linguagem de programação Python, o pacote Python Turtle e a computação desplugada, com a Máquina de Turing. A coleta de dados aconteceu durante a disciplina, a partir de diferentes fontes de evidência: observação, questionário, entrevista, diário de campo e artefatos produzidos pelos estudantes acerca dos problemas resolvidos e os problemas propostos por eles, com as respectivas soluções. Realizou-se a análise dos dados, com a teoria de Robbie Case. Analisaram-se as soluções construídas pelos estudantes em termos de estratégias, as quais foram representadas de forma semelhante à Estrutura de Controle Executivo. Os conceitos envolvidos, suas representações e relações estabelecidas foram expressos na forma de Estrutura Conceitual Central, como a rede de nodos e interconexões dos conceitos. Com os resultados obtidos, evidenciaram-se os processos reguladores de Case durante as aulas e nas resoluções desenvolvidas pelos licenciandos em Matemática. Observou-se que o processo regulador Imitação acontecia especialmente ao ser trabalhado um conceito novo. A criação de problemas pelos estudantes, exigiu a contextualização, o conteúdo propriamente, sua articulação com o Pensamento Computacional e o estabelecimento de conexões com outros conteúdos matemáticos. Constatou-se que as estratégias de solução desenvolvidas foram se ampliando, conforme aumentava a complexidade dos problemas. Os estudantes empregaram diferentes formas de representação dos dados sobre os problemas: numérica, algébrica e visual. Estabeleceram-se relações entre o Pensamento Computacional e o Pensamento Algébrico, de forma mútua. As habilidades do Pensamento Computacional reveladas, nessas relações, foram coleção de dados, análise de dados, representação de dados, algoritmos/procedimentos, abstração e decomposição do problema. Houve indícios de que as habilidades do Pensamento Computacional podem compor uma forma de resolução de problemas no ensino de matemática e de que os futuros professores reconheceram essa possibilidade e a aplicaram na resolução dos problemas.Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2021-06-16T13:17:30Z No. of bitstreams: 2 Tese_AnaPaulaCanal_Tede.pdf: 17045757 bytes, checksum: fbe6f5d2e25759bc16bac47dc67d051f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2021-06-16T13:17:30Z (GMT). No. of bitstreams: 2 Tese_AnaPaulaCanal_Tede.pdf: 17045757 bytes, checksum: fbe6f5d2e25759bc16bac47dc67d051f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2021-03-25application/pdfhttp://www.tede.universidadefranciscana.edu.br:8080/retrieve/7839/Tese_AnaPaulaCanal_Tede.pdf.jpgporUniversidade FranciscanaPrograma de Pós-Graduação em Ensino de Ciências e MatemáticaUFNBrasilEnsino de Ciências e Matemáticahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEnsino de Computação. Ensino de Matemática. Licenciatura. Neopiagetiano. Padrões e Regularidades.Computation teaching. Mathematics teaching. Licentiate Degree. Neo-Piagetian. Patterns and regularities.Ensino de Ciências e MatemáticaPensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Caseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional Universidade Franciscanainstname:Universidade Franciscana (UFN)instacron:UFNTHUMBNAILTese_AnaPaulaCanal_Tede.pdf.jpgTese_AnaPaulaCanal_Tede.pdf.jpgimage/jpeg3631http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/7/Tese_AnaPaulaCanal_Tede.pdf.jpgf03954a1787f40caa70c73cb90aa9373MD57TEXTTese_AnaPaulaCanal_Tede.pdf.txtTese_AnaPaulaCanal_Tede.pdf.txttext/plain641397http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/6/Tese_AnaPaulaCanal_Tede.pdf.txt9081d1465a572b113915faf7f938d7ebMD56ORIGINALTese_AnaPaulaCanal_Tede.pdfTese_AnaPaulaCanal_Tede.pdfapplication/pdf17045757http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/5/Tese_AnaPaulaCanal_Tede.pdffbe6f5d2e25759bc16bac47dc67d051fMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8310http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/1/license.txt7dc66ddb96829ff34b56b1a92c851bcdMD51UFN-BDTD/9772021-06-17 01:01:21.369oai:tede.universidadefranciscana.edu.br:UFN-BDTD/977RXN0ZSB0cmFiYWxobyBzZXLDoSBsaWNlbmNpYWRvIHNvYiBhIExpY2Vuw6dhIEF0cmlidWnDp8Ojby1Ow6NvQ29tZXJjaWFsLVNlbURlcml2YcOnw7VlcyA0LjAgSW50ZXJuYWNpb25hbCBDcmVhdGl2ZSBDb21tb25zLiBQYXJhIHZpc3VhbGl6YXIgdW1hIGPDs3BpYSBkZXN0YSBsaWNlbsOnYSwgdmlzaXRlIGh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8gb3UgbWFuZGUgdW1hIGNhcnRhIHBhcmEgQ3JlYXRpdmUgQ29tbW9ucywgUE8gQm94IDE4NjYsIE1vdW50YWluIFZpZXcsIENBIDk0MDQyLCBVU0EuCg==Repositório de Publicaçõeshttp://www.tede.universidadefranciscana.edu.br:8080/http://www.tede.universidadefranciscana.edu.br:8080/oai/requestopendoar:2021-06-17T04:01:21Repositório Institucional Universidade Franciscana - Universidade Franciscana (UFN)false |
dc.title.por.fl_str_mv |
Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case |
title |
Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case |
spellingShingle |
Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case Canal, Ana Paula Ensino de Computação. Ensino de Matemática. Licenciatura. Neopiagetiano. Padrões e Regularidades. Computation teaching. Mathematics teaching. Licentiate Degree. Neo-Piagetian. Patterns and regularities. Ensino de Ciências e Matemática |
title_short |
Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case |
title_full |
Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case |
title_fullStr |
Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case |
title_full_unstemmed |
Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case |
title_sort |
Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case |
author |
Canal, Ana Paula |
author_facet |
Canal, Ana Paula |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Isaia, Silvia Maria de Aguiar |
dc.contributor.advisor-co1.fl_str_mv |
Bisognin, Vanilde |
dc.contributor.referee1.fl_str_mv |
Bittencourt, João Ricardo |
dc.contributor.referee2.fl_str_mv |
Valente, José Armando |
dc.contributor.referee3.fl_str_mv |
Bisognin, Eleni |
dc.contributor.referee4.fl_str_mv |
Scremin, Greice |
dc.contributor.author.fl_str_mv |
Canal, Ana Paula |
contributor_str_mv |
Isaia, Silvia Maria de Aguiar Bisognin, Vanilde Bittencourt, João Ricardo Valente, José Armando Bisognin, Eleni Scremin, Greice |
dc.subject.por.fl_str_mv |
Ensino de Computação. Ensino de Matemática. Licenciatura. Neopiagetiano. Padrões e Regularidades. |
topic |
Ensino de Computação. Ensino de Matemática. Licenciatura. Neopiagetiano. Padrões e Regularidades. Computation teaching. Mathematics teaching. Licentiate Degree. Neo-Piagetian. Patterns and regularities. Ensino de Ciências e Matemática |
dc.subject.eng.fl_str_mv |
Computation teaching. Mathematics teaching. Licentiate Degree. Neo-Piagetian. Patterns and regularities. |
dc.subject.cnpq.fl_str_mv |
Ensino de Ciências e Matemática |
description |
This investigation was developed within the scope of Postgraduate Program in the Teaching of Science and Mathematics, in the research line “Teaching and learning in Science and Mathematics”. The aim was to analyze how computational thinking, linked to problem resolution according to Robbie Case’s theory in teaching, can contribute to the initial training of Mathematics professors. The methodology had a qualitative approach, and it was a case study. A subject, in the form of complementary curricular activity, was offered to students of Mathematics, in the second semester of 2019. They studied patterns and regularities with Computational Thinking via Python programming language, Python Turtle, and unplugged computing, with Turing machine. The data collection happened during the subject, with the help of different evidence sources: observation, survey, interview, field journal, and artifacts produced by the students about solved problems and problems proposed by them, with the respective solutions. The data analysis was carried out with the theory of Robbie Case. The solutions made by the students in terms of the strategy were analyzed and represented closely related to Executive Control Structure. The concepts involved, their representations and their established relations were expressed in form of Central Conceptual Structure, as the network of nodes and interconnections of the concepts.With the obtained results, the regulatory processes of the Case during the classes and in resolutions developed by students of Mathematics were showed. It was observed that the Imitation regulatory process happened especially when a new concept was worked on. The problem creation by the students demanded contextualization, content, its articulation with Computational Thinking, and the establishment of connections with other mathematical contents. It was observed that developed solution strategies were increasing, as the complexity of problems increased. The students used different ways of data representation about the problems: numeric, algebraic, and visual. Relations were established between Computational Thinking and Algebraic Thinking in a mutual form. The skills of Computational Thinking revealed in these relations were data collection, data analysis, data representation, algorithms/procedures, abstraction, and problem decomposition. There was evidence that skills of Computational Thinking can compose a way of problem resolution in the teaching of Mathematics, and that the future professors recognized this possibility and put it into practice in problem resolution. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-06-16T13:17:30Z |
dc.date.issued.fl_str_mv |
2021-03-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Canal, Ana Paula. Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case. 2021. 319f. Tese( Programa de Pós-Graduação em Ensino de Ciências e Matemática) - Universidade Franciscana, Santa Maria - RS . |
dc.identifier.uri.fl_str_mv |
http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/977 |
identifier_str_mv |
Canal, Ana Paula. Pensamento Computacional articulado à Resolução de Problemas no Ensino para Formação Inicial de Professores de Matemática: uma abordagem a partir da Teoria de Robbie Case. 2021. 319f. Tese( Programa de Pós-Graduação em Ensino de Ciências e Matemática) - Universidade Franciscana, Santa Maria - RS . |
url |
http://www.tede.universidadefranciscana.edu.br:8080/handle/UFN-BDTD/977 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Franciscana |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ensino de Ciências e Matemática |
dc.publisher.initials.fl_str_mv |
UFN |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Ensino de Ciências e Matemática |
publisher.none.fl_str_mv |
Universidade Franciscana |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional Universidade Franciscana instname:Universidade Franciscana (UFN) instacron:UFN |
instname_str |
Universidade Franciscana (UFN) |
instacron_str |
UFN |
institution |
UFN |
reponame_str |
Repositório Institucional Universidade Franciscana |
collection |
Repositório Institucional Universidade Franciscana |
bitstream.url.fl_str_mv |
http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/7/Tese_AnaPaulaCanal_Tede.pdf.jpg http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/6/Tese_AnaPaulaCanal_Tede.pdf.txt http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/5/Tese_AnaPaulaCanal_Tede.pdf http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/2/license_url http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/3/license_text http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/4/license_rdf http://tede.universidadefranciscana.edu.br:8080/bitstream/UFN-BDTD/977/1/license.txt |
bitstream.checksum.fl_str_mv |
f03954a1787f40caa70c73cb90aa9373 9081d1465a572b113915faf7f938d7eb fbe6f5d2e25759bc16bac47dc67d051f 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 7dc66ddb96829ff34b56b1a92c851bcd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional Universidade Franciscana - Universidade Franciscana (UFN) |
repository.mail.fl_str_mv |
|
_version_ |
1809269404448325632 |